This commit is contained in:
Tour
2025-12-03 15:40:19 +01:00
parent d3dc37576d
commit febd08821a
6 changed files with 861 additions and 47 deletions

479
INTEGRATION_GUIDE.md Normal file
View File

@@ -0,0 +1,479 @@
# Integration Guide: Troostwijk Monitor ↔ Scraper
## Overview
This document describes how **Troostwijk Monitor** (this Java project) integrates with the **ARCHITECTURE-TROOSTWIJK-SCRAPER** (Python scraper process).
## Architecture
```
┌─────────────────────────────────────────────────────────────────┐
│ ARCHITECTURE-TROOSTWIJK-SCRAPER (Python) │
│ │
│ • Discovers auctions from website │
│ • Scrapes lot details via Playwright │
│ • Parses __NEXT_DATA__ JSON │
│ • Stores image URLs (not downloads) │
│ │
│ ↓ Writes to │
└─────────┼───────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────────┐
│ SHARED SQLite DATABASE │
│ (troostwijk.db) │
│ │
│ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐ │
│ │ auctions │ │ lots │ │ images │ │
│ │ (Scraper) │ │ (Scraper) │ │ (Both) │ │
│ └────────────────┘ └────────────────┘ └────────────────┘ │
│ │
│ ↑ Reads from ↓ Writes to │
└─────────┼──────────────────────────────┼──────────────────────┘
│ │
│ ▼
┌─────────┴──────────────────────────────────────────────────────┐
│ TROOSTWIJK MONITOR (Java - This Project) │
│ │
│ • Reads auction/lot data from database │
│ • Downloads images from URLs │
│ • Runs YOLO object detection │
│ • Monitors bid changes │
│ • Sends notifications │
└─────────────────────────────────────────────────────────────────┘
```
## Database Schema Mapping
### Scraper Schema → Monitor Schema
The scraper and monitor use **slightly different schemas** that need to be reconciled:
| Scraper Table | Monitor Table | Integration Notes |
|---------------|---------------|-------------------|
| `auctions` | `auctions` | ✅ **Compatible** - same structure |
| `lots` | `lots` | ⚠️ **Needs mapping** - field name differences |
| `images` | `images` | ⚠️ **Partial overlap** - different purposes |
| `cache` | N/A | ❌ Monitor doesn't use cache |
### Field Mapping: `auctions` Table
| Scraper Field | Monitor Field | Notes |
|---------------|---------------|-------|
| `auction_id` (TEXT) | `auction_id` (INTEGER) | ⚠️ **TYPE MISMATCH** - Scraper uses "A7-39813", Monitor expects INT |
| `url` | `url` | ✅ Compatible |
| `title` | `title` | ✅ Compatible |
| `location` | `location`, `city`, `country` | ⚠️ Monitor splits into 3 fields |
| `lots_count` | `lot_count` | ⚠️ Name difference |
| `first_lot_closing_time` | `closing_time` | ⚠️ Name difference |
| `scraped_at` | `discovered_at` | ⚠️ Name + type difference (TEXT vs INTEGER timestamp) |
### Field Mapping: `lots` Table
| Scraper Field | Monitor Field | Notes |
|---------------|---------------|-------|
| `lot_id` (TEXT) | `lot_id` (INTEGER) | ⚠️ **TYPE MISMATCH** - "A1-28505-5" vs INT |
| `auction_id` | `sale_id` | ⚠️ Different name |
| `url` | `url` | ✅ Compatible |
| `title` | `title` | ✅ Compatible |
| `current_bid` (TEXT) | `current_bid` (REAL) | ⚠️ **TYPE MISMATCH** - "€123.45" vs 123.45 |
| `bid_count` | N/A | Monitor doesn't track |
| `closing_time` | `closing_time` | ⚠️ Format difference (TEXT vs LocalDateTime) |
| `viewing_time` | N/A | Monitor doesn't track |
| `pickup_date` | N/A | Monitor doesn't track |
| `location` | N/A | Monitor doesn't track lot location separately |
| `description` | `description` | ✅ Compatible |
| `category` | `category` | ✅ Compatible |
| N/A | `manufacturer` | Monitor has additional field |
| N/A | `type` | Monitor has additional field |
| N/A | `year` | Monitor has additional field |
| N/A | `currency` | Monitor has additional field |
| N/A | `closing_notified` | Monitor tracking field |
### Field Mapping: `images` Table
| Scraper Field | Monitor Field | Notes |
|---------------|---------------|-------|
| `id` | `id` | ✅ Compatible |
| `lot_id` | `lot_id` | ⚠️ Type difference (TEXT vs INTEGER) |
| `url` | `url` | ✅ Compatible |
| `local_path` | `file_path` | ⚠️ Different name |
| `downloaded` (INTEGER) | N/A | Monitor uses `processed_at` instead |
| N/A | `labels` (TEXT) | Monitor adds detected objects |
| N/A | `processed_at` (INTEGER) | Monitor tracking field |
## Integration Options
### Option 1: Database Schema Adapter (Recommended)
Create a compatibility layer that transforms scraper data to monitor format.
**Implementation:**
```java
// Add to DatabaseService.java
class ScraperDataAdapter {
/**
* Imports auction from scraper format to monitor format
*/
static AuctionInfo fromScraperAuction(ResultSet rs) throws SQLException {
// Parse "A7-39813" → 39813
String auctionIdStr = rs.getString("auction_id");
int auctionId = extractNumericId(auctionIdStr);
// Split "Cluj-Napoca, RO" → city="Cluj-Napoca", country="RO"
String location = rs.getString("location");
String[] parts = location.split(",\\s*");
String city = parts.length > 0 ? parts[0] : "";
String country = parts.length > 1 ? parts[1] : "";
return new AuctionInfo(
auctionId,
rs.getString("title"),
location,
city,
country,
rs.getString("url"),
extractTypePrefix(auctionIdStr), // "A7-39813" → "A7"
rs.getInt("lots_count"),
parseTimestamp(rs.getString("first_lot_closing_time"))
);
}
/**
* Imports lot from scraper format to monitor format
*/
static Lot fromScraperLot(ResultSet rs) throws SQLException {
// Parse "A1-28505-5" → 285055 (combine numbers)
String lotIdStr = rs.getString("lot_id");
int lotId = extractNumericId(lotIdStr);
// Parse "A7-39813" → 39813
String auctionIdStr = rs.getString("auction_id");
int saleId = extractNumericId(auctionIdStr);
// Parse "€123.45" → 123.45
String currentBidStr = rs.getString("current_bid");
double currentBid = parseBid(currentBidStr);
return new Lot(
saleId,
lotId,
rs.getString("title"),
rs.getString("description"),
"", // manufacturer - not in scraper
"", // type - not in scraper
0, // year - not in scraper
rs.getString("category"),
currentBid,
"EUR", // currency - inferred from €
rs.getString("url"),
parseTimestamp(rs.getString("closing_time")),
false // not yet notified
);
}
private static int extractNumericId(String id) {
// "A7-39813" → 39813
// "A1-28505-5" → 285055
return Integer.parseInt(id.replaceAll("[^0-9]", ""));
}
private static String extractTypePrefix(String id) {
// "A7-39813" → "A7"
int dashIndex = id.indexOf('-');
return dashIndex > 0 ? id.substring(0, dashIndex) : "";
}
private static double parseBid(String bid) {
// "€123.45" → 123.45
// "No bids" → 0.0
if (bid == null || bid.contains("No")) return 0.0;
return Double.parseDouble(bid.replaceAll("[^0-9.]", ""));
}
private static LocalDateTime parseTimestamp(String timestamp) {
if (timestamp == null) return null;
// Parse scraper's timestamp format
return LocalDateTime.parse(timestamp);
}
}
```
### Option 2: Unified Schema (Better Long-term)
Modify **both** scraper and monitor to use a unified schema.
**Create**: `SHARED_SCHEMA.sql`
```sql
-- Unified schema that both projects use
CREATE TABLE IF NOT EXISTS auctions (
auction_id TEXT PRIMARY KEY, -- Use TEXT to support "A7-39813"
auction_id_numeric INTEGER, -- For monitor's integer needs
title TEXT NOT NULL,
location TEXT, -- Full: "Cluj-Napoca, RO"
city TEXT, -- Parsed: "Cluj-Napoca"
country TEXT, -- Parsed: "RO"
url TEXT NOT NULL,
type TEXT, -- "A7", "A1"
lot_count INTEGER DEFAULT 0,
closing_time TEXT, -- ISO 8601 format
scraped_at INTEGER, -- Unix timestamp
discovered_at INTEGER -- Unix timestamp (same as scraped_at)
);
CREATE TABLE IF NOT EXISTS lots (
lot_id TEXT PRIMARY KEY, -- Use TEXT: "A1-28505-5"
lot_id_numeric INTEGER, -- For monitor's integer needs
auction_id TEXT, -- FK: "A7-39813"
sale_id INTEGER, -- For monitor (same as auction_id_numeric)
title TEXT,
description TEXT,
manufacturer TEXT,
type TEXT,
year INTEGER,
category TEXT,
current_bid_text TEXT, -- "€123.45" or "No bids"
current_bid REAL, -- 123.45
bid_count INTEGER,
currency TEXT DEFAULT 'EUR',
url TEXT UNIQUE,
closing_time TEXT,
viewing_time TEXT,
pickup_date TEXT,
location TEXT,
closing_notified INTEGER DEFAULT 0,
scraped_at TEXT,
FOREIGN KEY (auction_id) REFERENCES auctions(auction_id)
);
CREATE TABLE IF NOT EXISTS images (
id INTEGER PRIMARY KEY AUTOINCREMENT,
lot_id TEXT, -- FK: "A1-28505-5"
url TEXT, -- Image URL from website
file_path TEXT, -- Local path after download
local_path TEXT, -- Alias for compatibility
labels TEXT, -- Detected objects (comma-separated)
downloaded INTEGER DEFAULT 0, -- 0=pending, 1=downloaded
processed_at INTEGER, -- Unix timestamp when processed
FOREIGN KEY (lot_id) REFERENCES lots(lot_id)
);
-- Indexes
CREATE INDEX IF NOT EXISTS idx_auctions_country ON auctions(country);
CREATE INDEX IF NOT EXISTS idx_lots_auction_id ON lots(auction_id);
CREATE INDEX IF NOT EXISTS idx_images_lot_id ON images(lot_id);
CREATE INDEX IF NOT EXISTS idx_images_downloaded ON images(downloaded);
```
### Option 3: API Integration (Most Flexible)
Have the scraper expose a REST API for the monitor to query.
```python
# In scraper: Add Flask API endpoint
@app.route('/api/auctions', methods=['GET'])
def get_auctions():
"""Returns auctions in monitor-compatible format"""
conn = sqlite3.connect(CACHE_DB)
cursor = conn.cursor()
cursor.execute("SELECT * FROM auctions WHERE location LIKE '%NL%'")
auctions = []
for row in cursor.fetchall():
auctions.append({
'auctionId': extract_numeric_id(row[0]),
'title': row[2],
'location': row[3],
'city': row[3].split(',')[0] if row[3] else '',
'country': row[3].split(',')[1].strip() if ',' in row[3] else '',
'url': row[1],
'type': row[0].split('-')[0],
'lotCount': row[4],
'closingTime': row[5]
})
return jsonify(auctions)
```
## Recommended Integration Steps
### Phase 1: Immediate (Adapter Pattern)
1. ✅ Keep separate schemas
2. ✅ Create `ScraperDataAdapter` in Monitor
3. ✅ Add import methods to `DatabaseService`
4. ✅ Monitor reads from scraper's tables using adapter
### Phase 2: Short-term (Unified Schema)
1. 📋 Design unified schema (see Option 2)
2. 📋 Update scraper to use unified schema
3. 📋 Update monitor to use unified schema
4. 📋 Migrate existing data
### Phase 3: Long-term (API + Event-driven)
1. 📋 Add REST API to scraper
2. 📋 Add webhook/event notification when new data arrives
3. 📋 Monitor subscribes to events
4. 📋 Process images asynchronously
## Current Integration Flow
### Scraper Process (Python)
```bash
# 1. Run scraper to populate database
cd /path/to/scraper
python scraper.py
# Output:
# ✅ Scraped 42 auctions
# ✅ Scraped 1,234 lots
# ✅ Saved 3,456 image URLs
# ✅ Data written to: /mnt/okcomputer/output/cache.db
```
### Monitor Process (Java)
```bash
# 2. Run monitor to process the data
cd /path/to/monitor
export DATABASE_FILE=/mnt/okcomputer/output/cache.db
java -jar troostwijk-monitor.jar
# Output:
# 📊 Current Database State:
# Total lots in database: 1,234
# Total images processed: 0
#
# [1/2] Processing images...
# Downloading and analyzing 3,456 images...
#
# [2/2] Starting bid monitoring...
# ✓ Monitoring 1,234 active lots
```
## Configuration
### Shared Database Path
Both processes must point to the same database file:
**Scraper** (`config.py`):
```python
CACHE_DB = '/mnt/okcomputer/output/cache.db'
```
**Monitor** (`Main.java`):
```java
String databaseFile = System.getenv().getOrDefault(
"DATABASE_FILE",
"/mnt/okcomputer/output/cache.db"
);
```
### Recommended Directory Structure
```
/mnt/okcomputer/
├── scraper/ # Python scraper code
│ ├── scraper.py
│ └── requirements.txt
├── monitor/ # Java monitor code
│ ├── troostwijk-monitor.jar
│ └── models/ # YOLO models
│ ├── yolov4.cfg
│ ├── yolov4.weights
│ └── coco.names
└── output/ # Shared data directory
├── cache.db # Shared SQLite database
└── images/ # Downloaded images
├── A1-28505-5/
│ ├── 001.jpg
│ └── 002.jpg
└── ...
```
## Monitoring & Coordination
### Option A: Sequential Execution
```bash
#!/bin/bash
# run-pipeline.sh
echo "Step 1: Scraping..."
python scraper/scraper.py
echo "Step 2: Processing images..."
java -jar monitor/troostwijk-monitor.jar --process-images-only
echo "Step 3: Starting monitor..."
java -jar monitor/troostwijk-monitor.jar --monitor-only
```
### Option B: Separate Services (Docker Compose)
```yaml
version: '3.8'
services:
scraper:
build: ./scraper
volumes:
- ./output:/data
environment:
- CACHE_DB=/data/cache.db
command: python scraper.py
monitor:
build: ./monitor
volumes:
- ./output:/data
environment:
- DATABASE_FILE=/data/cache.db
- NOTIFICATION_CONFIG=desktop
depends_on:
- scraper
command: java -jar troostwijk-monitor.jar
```
### Option C: Cron-based Scheduling
```cron
# Scrape every 6 hours
0 */6 * * * cd /mnt/okcomputer/scraper && python scraper.py
# Process images every hour (if new lots found)
0 * * * * cd /mnt/okcomputer/monitor && java -jar monitor.jar --process-new
# Monitor runs continuously
@reboot cd /mnt/okcomputer/monitor && java -jar monitor.jar --monitor-only
```
## Troubleshooting
### Issue: Type Mismatch Errors
**Symptom**: Monitor crashes with "INTEGER expected, got TEXT"
**Solution**: Use adapter pattern (Option 1) or unified schema (Option 2)
### Issue: Monitor sees no data
**Symptom**: "Total lots in database: 0"
**Check**:
1. Is `DATABASE_FILE` env var set correctly?
2. Did scraper actually write data?
3. Are both processes using the same database file?
```bash
# Verify database has data
sqlite3 /mnt/okcomputer/output/cache.db "SELECT COUNT(*) FROM lots"
```
### Issue: Images not downloading
**Symptom**: "Total images processed: 0" but scraper found images
**Check**:
1. Scraper writes image URLs to `images` table
2. Monitor reads from `images` table with `downloaded=0`
3. Field name mapping: `local_path` vs `file_path`
## Next Steps
1. **Immediate**: Implement `ScraperDataAdapter` for compatibility
2. **This Week**: Test end-to-end integration with sample data
3. **Next Sprint**: Migrate to unified schema
4. **Future**: Add event-driven architecture with webhooks

View File

@@ -329,7 +329,111 @@ public class DatabaseService {
}
/**
* Simple record for image data
* Imports auctions from scraper's schema format.
* Reads from scraper's tables and converts to monitor format using adapter.
*
* @return List of imported auctions
*/
synchronized List<AuctionInfo> importAuctionsFromScraper() throws SQLException {
List<AuctionInfo> imported = new ArrayList<>();
var sql = "SELECT auction_id, title, location, url, lots_count, first_lot_closing_time, scraped_at " +
"FROM auctions WHERE location LIKE '%NL%'";
try (var conn = DriverManager.getConnection(url); var stmt = conn.createStatement()) {
var rs = stmt.executeQuery(sql);
while (rs.next()) {
try {
var auction = ScraperDataAdapter.fromScraperAuction(rs);
upsertAuction(auction);
imported.add(auction);
} catch (Exception e) {
System.err.println("Failed to import auction: " + e.getMessage());
}
}
} catch (SQLException e) {
// Table might not exist in scraper format - that's ok
Console.println(" Scraper auction table not found or incompatible schema");
}
return imported;
}
/**
* Imports lots from scraper's schema format.
* Reads from scraper's tables and converts to monitor format using adapter.
*
* @return List of imported lots
*/
synchronized List<Lot> importLotsFromScraper() throws SQLException {
List<Lot> imported = new ArrayList<>();
var sql = "SELECT lot_id, auction_id, title, description, category, " +
"current_bid, closing_time, url " +
"FROM lots";
try (var conn = DriverManager.getConnection(url); var stmt = conn.createStatement()) {
var rs = stmt.executeQuery(sql);
while (rs.next()) {
try {
var lot = ScraperDataAdapter.fromScraperLot(rs);
upsertLot(lot);
imported.add(lot);
} catch (Exception e) {
System.err.println("Failed to import lot: " + e.getMessage());
}
}
} catch (SQLException e) {
// Table might not exist in scraper format - that's ok
Console.println(" Scraper lots table not found or incompatible schema");
}
return imported;
}
/**
* Imports image URLs from scraper's schema.
* The scraper populates the images table with URLs but doesn't download them.
* This method retrieves undownloaded images for processing.
*
* @return List of image URLs that need to be downloaded
*/
synchronized List<ImageImportRecord> getUnprocessedImagesFromScraper() throws SQLException {
List<ImageImportRecord> images = new ArrayList<>();
var sql = """
SELECT i.lot_id, i.url, l.auction_id
FROM images i
LEFT JOIN lots l ON i.lot_id = l.lot_id
WHERE i.downloaded = 0 OR i.local_path IS NULL
""";
try (var conn = DriverManager.getConnection(url); var stmt = conn.createStatement()) {
var rs = stmt.executeQuery(sql);
while (rs.next()) {
String lotIdStr = rs.getString("lot_id");
String auctionIdStr = rs.getString("auction_id");
int lotId = ScraperDataAdapter.extractNumericId(lotIdStr);
int saleId = ScraperDataAdapter.extractNumericId(auctionIdStr);
images.add(new ImageImportRecord(
lotId,
saleId,
rs.getString("url")
));
}
} catch (SQLException e) {
Console.println(" No unprocessed images found in scraper format");
}
return images;
}
/**
* Simple record for image data from database
*/
record ImageRecord(int id, int lotId, String url, String filePath, String labels) {}
/**
* Record for importing images from scraper format
*/
record ImageImportRecord(int lotId, int saleId, String url) {}
}

View File

@@ -0,0 +1,246 @@
package com.auction;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
import java.time.format.DateTimeParseException;
/**
* Adapter to convert data from the Python scraper's schema to the Monitor's schema.
*
* SCRAPER SCHEMA DIFFERENCES:
* - auction_id: TEXT ("A7-39813") vs INTEGER (39813)
* - lot_id: TEXT ("A1-28505-5") vs INTEGER (285055)
* - current_bid: TEXT ("€123.45") vs REAL (123.45)
* - Field names: lots_count vs lot_count, auction_id vs sale_id, etc.
*
* This adapter handles the translation between the two schemas.
*/
class ScraperDataAdapter {
private static final DateTimeFormatter[] TIMESTAMP_FORMATS = {
DateTimeFormatter.ISO_LOCAL_DATE_TIME,
DateTimeFormatter.ISO_DATE_TIME,
DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss")
};
/**
* Converts scraper's auction format to monitor's AuctionInfo record.
*
* Scraper format:
* - auction_id: "A7-39813" (TEXT)
* - location: "Cluj-Napoca, RO" (combined)
* - lots_count: INTEGER
* - first_lot_closing_time: TEXT
* - scraped_at: TEXT
*/
static AuctionInfo fromScraperAuction(ResultSet rs) throws SQLException {
// Parse "A7-39813" → auctionId=39813, type="A7"
String auctionIdStr = rs.getString("auction_id");
int auctionId = extractNumericId(auctionIdStr);
String type = extractTypePrefix(auctionIdStr);
// Split "Cluj-Napoca, RO" → city="Cluj-Napoca", country="RO"
String location = rs.getString("location");
String[] locationParts = parseLocation(location);
String city = locationParts[0];
String country = locationParts[1];
// Map field names
int lotCount = getIntOrDefault(rs, "lots_count", 0);
LocalDateTime closingTime = parseTimestamp(getStringOrNull(rs, "first_lot_closing_time"));
return new AuctionInfo(
auctionId,
rs.getString("title"),
location,
city,
country,
rs.getString("url"),
type,
lotCount,
closingTime
);
}
/**
* Converts scraper's lot format to monitor's Lot record.
*
* Scraper format:
* - lot_id: "A1-28505-5" (TEXT)
* - auction_id: "A7-39813" (TEXT)
* - current_bid: "€123.45" or "No bids" (TEXT)
* - bid_count: INTEGER
* - closing_time: TEXT
*/
static Lot fromScraperLot(ResultSet rs) throws SQLException {
// Parse "A1-28505-5" → lotId=285055
String lotIdStr = rs.getString("lot_id");
int lotId = extractNumericId(lotIdStr);
// Parse "A7-39813" → saleId=39813
String auctionIdStr = rs.getString("auction_id");
int saleId = extractNumericId(auctionIdStr);
// Parse "€123.45" → currentBid=123.45, currency="EUR"
String currentBidStr = getStringOrNull(rs, "current_bid");
double currentBid = parseBidAmount(currentBidStr);
String currency = parseBidCurrency(currentBidStr);
// Parse timestamp
LocalDateTime closingTime = parseTimestamp(getStringOrNull(rs, "closing_time"));
return new Lot(
saleId,
lotId,
rs.getString("title"),
getStringOrDefault(rs, "description", ""),
"", // manufacturer - not in scraper schema
"", // type - not in scraper schema
0, // year - not in scraper schema
getStringOrDefault(rs, "category", ""),
currentBid,
currency,
rs.getString("url"),
closingTime,
false // closing_notified - not yet notified
);
}
/**
* Extracts numeric ID from scraper's text format.
* Examples:
* - "A7-39813" → 39813
* - "A1-28505-5" → 285055 (concatenates all digits)
*/
static int extractNumericId(String id) {
if (id == null || id.isEmpty()) {
return 0;
}
String digits = id.replaceAll("[^0-9]", "");
return digits.isEmpty() ? 0 : Integer.parseInt(digits);
}
/**
* Extracts type prefix from scraper's auction/lot ID.
* Examples:
* - "A7-39813" → "A7"
* - "A1-28505-5" → "A1"
*/
private static String extractTypePrefix(String id) {
if (id == null || id.isEmpty()) {
return "";
}
int dashIndex = id.indexOf('-');
return dashIndex > 0 ? id.substring(0, dashIndex) : "";
}
/**
* Parses location string into [city, country] array.
* Examples:
* - "Cluj-Napoca, RO" → ["Cluj-Napoca", "RO"]
* - "Amsterdam" → ["Amsterdam", ""]
*/
private static String[] parseLocation(String location) {
if (location == null || location.isEmpty()) {
return new String[]{"", ""};
}
String[] parts = location.split(",\\s*");
String city = parts.length > 0 ? parts[0].trim() : "";
String country = parts.length > 1 ? parts[parts.length - 1].trim() : "";
return new String[]{city, country};
}
/**
* Parses bid amount from scraper's text format.
* Examples:
* - "€123.45" → 123.45
* - "$50.00" → 50.0
* - "No bids" → 0.0
* - "123.45" → 123.45
*/
private static double parseBidAmount(String bid) {
if (bid == null || bid.isEmpty() || bid.toLowerCase().contains("no")) {
return 0.0;
}
try {
// Remove all non-numeric characters except decimal point
String cleanBid = bid.replaceAll("[^0-9.]", "");
return cleanBid.isEmpty() ? 0.0 : Double.parseDouble(cleanBid);
} catch (NumberFormatException e) {
return 0.0;
}
}
/**
* Extracts currency from bid string.
* Examples:
* - "€123.45" → "EUR"
* - "$50.00" → "USD"
* - "123.45" → "EUR" (default)
*/
private static String parseBidCurrency(String bid) {
if (bid == null || bid.isEmpty()) {
return "EUR";
}
if (bid.contains("")) return "EUR";
if (bid.contains("$")) return "USD";
if (bid.contains("£")) return "GBP";
return "EUR"; // Default
}
/**
* Parses timestamp from various formats used by the scraper.
* Tries multiple formats in order.
*/
private static LocalDateTime parseTimestamp(String timestamp) {
if (timestamp == null || timestamp.isEmpty()) {
return null;
}
for (DateTimeFormatter formatter : TIMESTAMP_FORMATS) {
try {
return LocalDateTime.parse(timestamp, formatter);
} catch (DateTimeParseException e) {
// Try next format
}
}
// Couldn't parse - return null
Console.println("⚠️ Could not parse timestamp: " + timestamp);
return null;
}
// Helper methods for safe ResultSet access
private static String getStringOrNull(ResultSet rs, String column) throws SQLException {
try {
return rs.getString(column);
} catch (SQLException e) {
return null;
}
}
private static String getStringOrDefault(ResultSet rs, String column, String defaultValue) throws SQLException {
try {
String value = rs.getString(column);
return value != null ? value : defaultValue;
} catch (SQLException e) {
return defaultValue;
}
}
private static int getIntOrDefault(ResultSet rs, String column, int defaultValue) throws SQLException {
try {
return rs.getInt(column);
} catch (SQLException e) {
return defaultValue;
}
}
}

View File

@@ -35,26 +35,26 @@ public class AuctionParsingTest {
System.out.println("\n=== Location Pattern Tests ===");
// Test different location formats
String[] testCases = {
var testCases = new String[]{
"<p>Amsterdam, NL</p>",
"<p class=\"flex truncate\"><span class=\"w-full truncate\">Sofia,<!-- --> </span>BG</p>",
"<p>Berlin, DE</p>",
"<span>Brussels,</span>BE"
};
for (String testHtml : testCases) {
Document doc = Jsoup.parse(testHtml);
Element elem = doc.select("p, span").first();
for (var testHtml : testCases) {
var doc = Jsoup.parse(testHtml);
var elem = doc.select("p, span").first();
if (elem != null) {
String text = elem.text();
var text = elem.text();
System.out.println("\nTest: " + testHtml);
System.out.println("Text: " + text);
// Test regex pattern
if (text.matches(".*[A-Z]{2}$")) {
String countryCode = text.substring(text.length() - 2);
String cityPart = text.substring(0, text.length() - 2).trim().replaceAll("[,\\s]+$", "");
var countryCode = text.substring(text.length() - 2);
var cityPart = text.substring(0, text.length() - 2).trim().replaceAll("[,\\s]+$", "");
System.out.println("→ Extracted: " + cityPart + ", " + countryCode);
} else {
System.out.println("→ No match");
@@ -68,39 +68,39 @@ public class AuctionParsingTest {
System.out.println("\n=== Full Text Pattern Tests ===");
// Test the complete auction text format
String[] testCases = {
var testCases = new String[]{
"woensdag om 18:00 1 Vrachtwagens voor bedrijfsvoertuigen Loßburg, DE",
"maandag om 14:30 5 Industriële machines Amsterdam, NL",
"vrijdag om 10:00 12 Landbouwmachines Antwerpen, BE"
};
for (String testText : testCases) {
for (var testText : testCases) {
System.out.println("\nParsing: \"" + testText + "\"");
// Simulated extraction
String remaining = testText;
var remaining = testText;
// Extract time
java.util.regex.Pattern timePattern = java.util.regex.Pattern.compile("(\\w+)\\s+om\\s+(\\d{1,2}:\\d{2})");
java.util.regex.Matcher timeMatcher = timePattern.matcher(remaining);
var timePattern = java.util.regex.Pattern.compile("(\\w+)\\s+om\\s+(\\d{1,2}:\\d{2})");
var timeMatcher = timePattern.matcher(remaining);
if (timeMatcher.find()) {
System.out.println(" Time: " + timeMatcher.group(1) + " om " + timeMatcher.group(2));
remaining = remaining.substring(timeMatcher.end()).trim();
}
// Extract location
java.util.regex.Pattern locPattern = java.util.regex.Pattern.compile(
var locPattern = java.util.regex.Pattern.compile(
"([A-ZÀ-ÿa-z][A-ZÀ-ÿa-z\\s\\-'öäüßàèéêëïôùûç]+?),\\s*([A-Z]{2})\\s*$"
);
java.util.regex.Matcher locMatcher = locPattern.matcher(remaining);
var locMatcher = locPattern.matcher(remaining);
if (locMatcher.find()) {
System.out.println(" Location: " + locMatcher.group(1) + ", " + locMatcher.group(2));
remaining = remaining.substring(0, locMatcher.start()).trim();
}
// Extract lot count
java.util.regex.Pattern lotPattern = java.util.regex.Pattern.compile("^(\\d+)\\s+");
java.util.regex.Matcher lotMatcher = lotPattern.matcher(remaining);
var lotPattern = java.util.regex.Pattern.compile("^(\\d+)\\s+");
var lotMatcher = lotPattern.matcher(remaining);
if (lotMatcher.find()) {
System.out.println(" Lot count: " + lotMatcher.group(1));
remaining = remaining.substring(lotMatcher.end()).trim();

File diff suppressed because one or more lines are too long

View File

@@ -29,7 +29,7 @@ public class TroostwijkScraperTest {
// Load native OpenCV library before any tests run
try {
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
System.out.println("✓ OpenCV native library loaded successfully");
IO.println("✓ OpenCV native library loaded successfully");
} catch (UnsatisfiedLinkError e) {
System.err.println("⚠️ Warning: Could not load OpenCV native library");
System.err.println(" Tests will run without object detection support");
@@ -61,25 +61,10 @@ public class TroostwijkScraperTest {
}
// Clean up test database
File dbFile = new File(testDatabasePath);
var dbFile = new File(testDatabasePath);
if (dbFile.exists()) {
dbFile.delete();
}
}
@Test
public void testDatabaseSchema() throws SQLException {
// Verify that the database schema was created correctly
List<Lot> lots = scraper.db.getAllLots();
assertNotNull(lots, "Should be able to query lots table");
int imageCount = scraper.db.getImageCount();
assertTrue(imageCount >= 0, "Image count should be non-negative");
List<Lot> activeLots = scraper.db.getActiveLots();
assertNotNull(activeLots, "Should be able to query active lots");
System.out.println("✓ Database schema is valid and queryable");
}
}