all

Tour
2025-12-03 12:29:05 +01:00
parent 999a6d056f
commit 87212cd612
7 changed files with 0 additions and 237 deletions

@@ -1,15 +0,0 @@
# Architecture1
## Overview
Document your application architecture here.
## Components
- **Frontend**: Description
- **Backend**: Description
- **Database**: Description
## Diagrams
Add architecture diagrams here.

@@ -1,107 +0,0 @@
# Architecture
## Overview
The Troostwijk Auctions Scraper is a Python-based web scraper that extracts auction lot data using Playwright for browser automation and SQLite for caching.
## Core Components
### 1. **Browser Automation (Playwright)**
- Launches Chromium browser in headless mode
- Bypasses Cloudflare protection
- Handles dynamic content rendering
- Supports network idle detection
### 2. **Cache Manager (SQLite)**
- Caches every fetched page
- Prevents redundant requests
- Stores page content, timestamps, and status codes
- Auto-cleans entries older than 7 days
- Database: `cache.db`
### 3. **Rate Limiter**
- Enforces exactly 0.5 seconds between requests
- Prevents server overload
- Tracks last request time globally
### 4. **Data Extractor**
- **Primary method:** Parses `__NEXT_DATA__` JSON from Next.js pages
- **Fallback method:** HTML pattern matching with regex
- Extracts: title, location, bid info, dates, images, descriptions
### 5. **Output Manager**
- Exports data in JSON and CSV formats
- Saves progress checkpoints every 10 lots
- Timestamped filenames for tracking
## Data Flow
```
1. Listing Pages → Extract lot URLs → Store in memory
2. For each lot URL → Check cache → If cached: use cached content
↓ If not: fetch with rate limit
3. Parse __NEXT_DATA__ JSON → Extract fields → Store in results
4. Every 10 lots → Save progress checkpoint
5. All lots complete → Export final JSON + CSV
```
## Key Design Decisions
### Why Playwright?
- Handles JavaScript-rendered content (Next.js)
- Bypasses Cloudflare protection
- More reliable than requests/BeautifulSoup for modern SPAs
### Why JSON extraction?
- Site uses Next.js with embedded `__NEXT_DATA__`
- JSON is more reliable than HTML pattern matching
- Avoids breaking when HTML/CSS changes
- Faster parsing
### Why SQLite caching?
- Persistent across runs
- Reduces load on target server
- Enables test mode without re-fetching
- Respects website resources
## File Structure
```
troost-scraper/
├── main.py # Main scraper logic
├── requirements.txt # Python dependencies
├── README.md # Documentation
├── .gitignore # Git exclusions
└── output/ # Generated files (not in git)
├── cache.db # SQLite cache
├── *_partial_*.json # Progress checkpoints
├── *_final_*.json # Final JSON output
└── *_final_*.csv # Final CSV output
```
## Classes
### `CacheManager`
- `__init__(db_path)` - Initialize cache database
- `get(url, max_age_hours)` - Retrieve cached page
- `set(url, content, status_code)` - Cache a page
- `clear_old(max_age_hours)` - Remove old entries
### `TroostwijkScraper`
- `crawl_auctions(max_pages)` - Main entry point
- `crawl_listing_page(page, page_num)` - Extract lot URLs
- `crawl_lot(page, url)` - Scrape individual lot
- `_extract_nextjs_data(content)` - Parse JSON data
- `_parse_lot_page(content, url)` - Extract all fields
- `save_final_results(data)` - Export JSON + CSV
## Scalability Notes
- **Rate limiting** prevents IP blocks but slows execution
- **Caching** makes subsequent runs instant for unchanged pages
- **Progress checkpoints** allow resuming after interruption
- **Async/await** used throughout for non-blocking I/O

@@ -1,2 +0,0 @@
[InternetShortcut]
URL=https://git.appmodel.nl/Tour/troost-scraper-wiki/src/branch/main/Architect.md

@@ -1,27 +0,0 @@
# Deployment
## Automatic Deployment
This project uses automatic deployment via git hooks.
### Pipeline
1. Push to `main` branch
2. Git hook triggers
3. Code syncs to `/opt/apps/troost-scraper`
4. Docker builds and deploys
5. Container starts automatically
### Manual Deployment
```bash
sudo apps:deploy troost-scraper
```
## Monitoring
View logs:
```bash
tail -f /home/git/logs/apps:deploy-troost-scraper.log
docker logs troost-scraper
```

@@ -1,71 +0,0 @@
# Getting Started
## Prerequisites
- Python 3.8+
- Git
- pip (Python package manager)
## Installation
### 1. Clone the repository
```bash
git clone --recurse-submodules git@git.appmodel.nl:Tour/troost-scraper.git
cd troost-scraper
```
### 2. Install dependencies
```bash
pip install -r requirements.txt
```
### 3. Install Playwright browsers
```bash
playwright install chromium
```
## Configuration
Edit the configuration in `main.py`:
```python
BASE_URL = "https://www.troostwijkauctions.com"
CACHE_DB = "/path/to/cache.db" # Path to cache database
OUTPUT_DIR = "/path/to/output" # Output directory
RATE_LIMIT_SECONDS = 0.5 # Delay between requests
MAX_PAGES = 50 # Number of listing pages
```
**Windows users:** Use paths like `C:\\output\\cache.db`
## Usage
### Basic scraping
```bash
python main.py
```
This will:
1. Crawl listing pages to collect lot URLs
2. Scrape each individual lot page
3. Save results in JSON and CSV formats
4. Cache all pages for future runs
### Test mode
Debug extraction on a specific URL:
```bash
python main.py --test "https://www.troostwijkauctions.com/a/lot-url"
```
## Output
The scraper generates:
- `troostwijk_lots_final_YYYYMMDD_HHMMSS.json` - Complete data
- `troostwijk_lots_final_YYYYMMDD_HHMMSS.csv` - CSV export
- `cache.db` - SQLite cache (persistent)

14
Home.md

@@ -1,14 +0,0 @@
# troost-scraper Wiki
Welcome to the troost-scraper documentation.
## Contents
- [Getting Started](Getting-Started.md)
- [Architecture](Architecture.md)
- [Deployment](Deployment.md)
## Quick Links
- [Repository](https://git.appmodel.nl/Tour/troost-scraper)
- [Issues](https://git.appmodel.nl/Tour/troost-scraper/issues)

@@ -1 +0,0 @@
Welkom op de wiki.