```mermaid graph TD A[Add bid_history table] --> B[Add watch_count + estimates] B --> C[Create market_indices] C --> D[Add condition + year fields] D --> E[Build comparable matching] E --> F[Enrich with auction house data] F --> G[Add AI image analysis] ``` | Current Practice | New Requirement | Why | |-----------------------|---------------------------------|---------------------------| | Scrape once per hour | **Scrape every bid update** | Capture velocity & timing | | Save only current bid | **Save full bid history** | Detect patterns & sniping | | Ignore watchers | **Track watch\_count** | Predict competition | | Skip auction metadata | **Capture house estimates** | Anchor valuations | | No historical data | **Store sold prices** | Train prediction models | | Basic text scraping | **Parse condition/serial/year** | Enable comparables | ```bazaar Week 1-2: Foundation Implement bid_history scraping (most critical) Add watch_count, starting_bid, estimated_min/max fields Calculate basic bid_velocity Week 3-4: Valuation Extract year_manufactured, manufacturer, condition_description Create market_indices (manually or via external API) Build comparable lot matching logic Week 5-6: Intelligence Layer Add auction house performance tracking Implement undervaluation detection algorithm Create price alert system Week 7-8: Automation Integrate image analysis API Add economic indicator tracking Refine ML-based price predictions ```