8.6 KiB
8.6 KiB
Data Reorganization Architecture: "Project Defrag"
Executive Summary
This document outlines the architecture for reorganizing 20TB of backup data across multiple NVMe drives and servers. The solution implements intelligent deduplication, systematic categorization, and optimized storage patterns for enhanced performance and maintainability.
System Architecture Overview
graph TB
subgraph "Source Environment"
A["Local Machine<br/>8x NVMe + 1 HDD<br/>~10TB"]
B["Server Machine<br/>Mixed Storage<br/>~10TB"]
end
subgraph "Processing Layer"
C["Discovery Engine"]
D["Classification Engine"]
E["Deduplication Engine"]
F["Migration Engine"]
end
subgraph "Target Architecture"
G["App Volumes"]
H["Gitea Repository"]
I["Build Cache (.maven, pycache)"]
J["Artifactories"]
K["Databases"]
L["Backups"]
M["LLM Model Cache"]
N["Git Infrastructure"]
end
A --> C
B --> C
C --> D
D --> E
E --> F
F --> G
F --> H
F --> I
F --> J
F --> K
F --> L
F --> M
F --> N
Data Flow Architecture
Phase 1: Discovery & Assessment
sequenceDiagram
participant D as Discovery Engine
participant FS as File System Scanner
participant DB as Metadata Database
participant API as System APIs
D->>FS: Scan directory structures
FS->>FS: Identify file types, sizes, dates
FS->>DB: Store file metadata
D->>API: Query system information
API->>DB: Store system context
DB->>D: Return analysis summary
Phase 2: Classification & Deduplication
sequenceDiagram
participant C as Classifier
participant DH as Deduplication Hash
participant CDB as Canonical DB
participant MAP as Mapping Store
C->>C: Analyze file signatures
C->>DH: Generate content hashes
DH->>CDB: Check for duplicates
CDB->>DH: Return canonical reference
DH->>MAP: Store deduplication map
C->>C: Apply categorization rules
Target Directory Structure
/mnt/organized/
├── apps/
│ ├── volumes/
│ │ ├── docker-volumes/
│ │ ├── app-data/
│ │ └── user-profiles/
│ └── runtime/
├── development/
│ ├── gitea/
│ │ ├── repositories/
│ │ ├── lfs-objects/
│ │ └── avatars/
│ ├── git-infrastructure/
│ │ ├── hooks/
│ │ ├── templates/
│ │ └── config/
│ └── build-tools/
│ ├── .maven/repository/
│ ├── gradle-cache/
│ └── sbt-cache/
├── artifacts/
│ ├── java/
│ │ ├── maven-central-cache/
│ │ ├── jfrog-artifactory/
│ │ └── gradle-build-cache/
│ ├── python/
│ │ ├── pypi-cache/
│ │ ├── wheelhouse/
│ │ └── pip-cache/
│ ├── node/
│ │ ├── npm-registry/
│ │ ├── yarn-cache/
│ │ └── pnpm-store/
│ └── go/
│ ├── goproxy-cache/
│ ├── module-cache/
│ └── sumdb-cache/
├── cache/
│ ├── llm-models/
│ │ ├── hugging-face/
│ │ ├── openai-cache/
│ │ └── local-llm/
│ ├── pycache/
│ ├── node_modules-archive/
│ └── browser-cache/
├── databases/
│ ├── postgresql/
│ ├── mysql/
│ ├── mongodb/
│ └── redis/
├── backups/
│ ├── system/
│ ├── application/
│ ├── database/
│ └── archive/
└── temp/
├── processing/
├── staging/
└── cleanup/
Technology Stack Recommendation
Primary Language: Python 3.11+
Rationale:
- Excellent file system handling capabilities
- Rich ecosystem for data processing (pandas, pyarrow)
- Built-in multiprocessing for I/O operations
- Superior hash library support for deduplication
- Cross-platform compatibility
Key Libraries:
# Core processing
import asyncio
import hashlib
import multiprocessing as mp
from pathlib import Path
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
# Data handling
import pandas as pd
import pyarrow as pa
import sqlite3
import json
# File analysis
import magic # python-magic
import mimetypes
import filetype
# System integration
import psutil
import shutil
import os
Deduplication Strategy
Algorithm Selection: Variable-Size Chunking with Rabin Fingerprinting
class AdvancedDeduplication:
def __init__(self, avg_chunk_size=8192):
self.chunker = RabinChunker(avg_chunk_size)
self.hash_store = HashStore()
def deduplicate_file(self, file_path):
chunks = self.chunker.chunk_file(file_path)
file_hash = self.compute_file_hash(chunks)
if self.hash_store.exists(file_hash):
return self.create_reference(file_hash)
else:
self.store_canonical(file_path, file_hash)
return file_hash
Performance Optimization:
- Parallel Processing: Utilize all CPU cores for hashing
- Memory Mapping: For large files (>100MB)
- Incremental Hashing: Process files in streams
- Cache Layer: Redis for frequently accessed hashes
Classification Engine
Rule-Based Classification System:
classification_rules:
build_artifacts:
patterns:
- "**/target/**"
- "**/build/**"
- "**/dist/**"
- "**/node_modules/**"
action: categorize_as_build_cache
development_tools:
patterns:
- "**/.maven/**"
- "**/.gradle/**"
- "**/.npm/**"
- "**/.cache/**"
action: categorize_as_tool_cache
repositories:
patterns:
- "**/.git/**"
- "**/repositories/**"
- "**/gitea/**"
action: categorize_as_vcs
database_files:
patterns:
- "**/*.db"
- "**/*.sqlite"
- "**/postgresql/**"
- "**/mysql/**"
action: categorize_as_database
model_files:
patterns:
- "**/*.bin"
- "**/*.onnx"
- "**/models/**"
- "**/llm*/**"
action: categorize_as_ai_model
Performance Considerations
NVMe Optimization Strategies:
-
Parallel I/O Operations
- Queue depth optimization (32-64 operations)
- Async I/O with io_uring where available
- Multi-threaded directory traversal
-
Memory Management
- Streaming processing for large files
- Memory-mapped file access
- Buffer pool for frequent operations
-
CPU Optimization
- SIMD instructions for hashing (AVX2/NEON)
- Process pool for parallel processing
- NUMA-aware memory allocation
Migration Strategy
Three-Phase Approach:
graph LR
A[Phase 1: Analysis] --> B[Phase 2: Staging]
B --> C[Phase 3: Migration]
A --> A1[Discovery Scan]
A --> A2[Deduplication Analysis]
A --> A3[Space Calculation]
B --> B1[Create Target Structure]
B --> B2[Hard Link Staging]
B --> B3[Validation Check]
C --> C1[Atomic Move Operations]
C --> C2[Symlink Updates]
C --> C3[Cleanup Verification]
Monitoring & Validation
Key Metrics:
- Processing Rate: Files/second, GB/hour
- Deduplication Ratio: Original vs. Final size
- Error Rate: Failed operations percentage
- Resource Usage: CPU, Memory, I/O utilization
Validation Checks:
- File integrity verification (hash comparison)
- Directory structure validation
- Symlink resolution testing
- Permission preservation audit
Risk Mitigation
Safety Measures:
- Read-First Approach: Never modify source until validation
- Incremental Processing: Process in small batches
- Backup Verification: Ensure backup integrity before operations
- Rollback Capability: Maintain reverse mapping for recovery
- Dry-Run Mode: Preview all operations before execution
Implementation Timeline
Phase 1: Tool Development (2-3 weeks)
- Core discovery engine
- Classification system
- Basic deduplication
- Testing framework
Phase 2: Staging & Validation (1-2 weeks)
- Target structure creation
- Sample data processing
- Performance optimization
- Safety verification
Phase 3: Production Migration (2-4 weeks)
- Full data processing
- Continuous monitoring
- Issue resolution
- Final validation
This architecture provides a robust, scalable solution for your data reorganization needs while maintaining data integrity and optimizing for your NVMe storage infrastructure.