start
This commit is contained in:
191
QUICKSTART.md
Normal file
191
QUICKSTART.md
Normal file
@@ -0,0 +1,191 @@
|
||||
# Quick Start Guide
|
||||
|
||||
Get the scraper running in minutes without downloading YOLO models!
|
||||
|
||||
## Minimal Setup (No Object Detection)
|
||||
|
||||
The scraper works perfectly fine **without** YOLO object detection. You can run it immediately and add object detection later if needed.
|
||||
|
||||
### Step 1: Run the Scraper
|
||||
|
||||
```bash
|
||||
# Using Maven
|
||||
mvn clean compile exec:java -Dexec.mainClass="com.auction.scraper.TroostwijkScraper"
|
||||
```
|
||||
|
||||
Or in IntelliJ IDEA:
|
||||
1. Open `TroostwijkScraper.java`
|
||||
2. Right-click on the `main` method
|
||||
3. Select "Run 'TroostwijkScraper.main()'"
|
||||
|
||||
### What You'll See
|
||||
|
||||
```
|
||||
=== Troostwijk Auction Scraper ===
|
||||
|
||||
Initializing scraper...
|
||||
⚠️ Object detection disabled: YOLO model files not found
|
||||
Expected files:
|
||||
- models/yolov4.cfg
|
||||
- models/yolov4.weights
|
||||
- models/coco.names
|
||||
Scraper will continue without image analysis.
|
||||
|
||||
[1/3] Discovering Dutch auctions...
|
||||
✓ Found 5 auctions: [12345, 12346, 12347, 12348, 12349]
|
||||
|
||||
[2/3] Fetching lot details...
|
||||
Processing sale 12345...
|
||||
|
||||
[3/3] Starting monitoring service...
|
||||
✓ Monitoring active. Press Ctrl+C to stop.
|
||||
```
|
||||
|
||||
### Step 2: Test Desktop Notifications
|
||||
|
||||
The scraper will automatically send desktop notifications when:
|
||||
- A new bid is placed on a monitored lot
|
||||
- An auction is closing within 5 minutes
|
||||
|
||||
**No setup required** - desktop notifications work out of the box!
|
||||
|
||||
---
|
||||
|
||||
## Optional: Add Email Notifications
|
||||
|
||||
If you want email notifications in addition to desktop notifications:
|
||||
|
||||
```bash
|
||||
# Set environment variable
|
||||
export NOTIFICATION_CONFIG="smtp:your.email@gmail.com:app_password:your.email@gmail.com"
|
||||
|
||||
# Then run the scraper
|
||||
mvn exec:java -Dexec.mainClass="com.auction.scraper.TroostwijkScraper"
|
||||
```
|
||||
|
||||
**Get Gmail App Password:**
|
||||
1. Enable 2FA in Google Account
|
||||
2. Go to: Google Account → Security → 2-Step Verification → App passwords
|
||||
3. Generate password for "Mail"
|
||||
4. Use that password (not your regular Gmail password)
|
||||
|
||||
---
|
||||
|
||||
## Optional: Add Object Detection Later
|
||||
|
||||
If you want AI-powered image analysis to detect objects in auction photos:
|
||||
|
||||
### 1. Create models directory
|
||||
```bash
|
||||
mkdir models
|
||||
cd models
|
||||
```
|
||||
|
||||
### 2. Download YOLO files
|
||||
```bash
|
||||
# YOLOv4 config (small)
|
||||
curl -O https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4.cfg
|
||||
|
||||
# YOLOv4 weights (245 MB - takes a few minutes)
|
||||
curl -LO https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.weights
|
||||
|
||||
# COCO class names
|
||||
curl -O https://raw.githubusercontent.com/AlexeyAB/darknet/master/data/coco.names
|
||||
```
|
||||
|
||||
### 3. Run again
|
||||
```bash
|
||||
mvn exec:java -Dexec.mainClass="com.auction.scraper.TroostwijkScraper"
|
||||
```
|
||||
|
||||
Now you'll see:
|
||||
```
|
||||
✓ Object detection enabled with YOLO
|
||||
```
|
||||
|
||||
The scraper will now analyze auction images and detect objects like:
|
||||
- Vehicles (cars, trucks, forklifts)
|
||||
- Equipment (machines, tools)
|
||||
- Furniture
|
||||
- Electronics
|
||||
- And 80+ other object types
|
||||
|
||||
---
|
||||
|
||||
## Features Without Object Detection
|
||||
|
||||
Even without YOLO, the scraper provides:
|
||||
|
||||
✅ **Full auction scraping** - Discovers all Dutch auctions
|
||||
✅ **Lot tracking** - Monitors bids and closing times
|
||||
✅ **Desktop notifications** - Real-time alerts
|
||||
✅ **SQLite database** - All data persisted locally
|
||||
✅ **Image downloading** - Saves all lot images
|
||||
✅ **Scheduled monitoring** - Automatic updates every hour
|
||||
|
||||
Object detection simply adds:
|
||||
- AI-powered image analysis
|
||||
- Automatic object labeling
|
||||
- Searchable image database
|
||||
|
||||
---
|
||||
|
||||
## Database Location
|
||||
|
||||
The scraper creates `troostwijk.db` in your current directory with:
|
||||
- All auction data
|
||||
- Lot details (title, description, bids, etc.)
|
||||
- Downloaded image paths
|
||||
- Object labels (if detection enabled)
|
||||
|
||||
View the database with any SQLite browser:
|
||||
```bash
|
||||
sqlite3 troostwijk.db
|
||||
.tables
|
||||
SELECT * FROM lots LIMIT 5;
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Stopping the Scraper
|
||||
|
||||
Press **Ctrl+C** to stop the monitoring service.
|
||||
|
||||
---
|
||||
|
||||
## Next Steps
|
||||
|
||||
1. ✅ **Run the scraper** without YOLO to test it
|
||||
2. ✅ **Verify desktop notifications** work
|
||||
3. ⚙️ **Optional**: Add email notifications
|
||||
4. ⚙️ **Optional**: Download YOLO models for object detection
|
||||
5. 🔧 **Customize**: Edit monitoring frequency, closing alerts, etc.
|
||||
|
||||
---
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Desktop notifications not appearing?
|
||||
- **Windows**: Check if Java has notification permissions
|
||||
- **Linux**: Ensure desktop environment is running (not headless)
|
||||
- **macOS**: Check System Preferences → Notifications
|
||||
|
||||
### OpenCV warnings?
|
||||
These are normal and can be ignored:
|
||||
```
|
||||
WARNING: A restricted method in java.lang.System has been called
|
||||
WARNING: Use --enable-native-access=ALL-UNNAMED to avoid warning
|
||||
```
|
||||
|
||||
The scraper works fine despite these warnings.
|
||||
|
||||
---
|
||||
|
||||
## Full Documentation
|
||||
|
||||
See [README.md](README.md) for complete documentation including:
|
||||
- Email setup details
|
||||
- YOLO installation guide
|
||||
- Configuration options
|
||||
- Database schema
|
||||
- API endpoints
|
||||
233
README.md
Normal file
233
README.md
Normal file
@@ -0,0 +1,233 @@
|
||||
# Troostwijk Auction Scraper
|
||||
|
||||
A Java-based web scraper for Dutch auctions on Troostwijk Auctions with **100% free** desktop/email notifications, SQLite persistence, and AI-powered object detection.
|
||||
|
||||
## Features
|
||||
|
||||
- **Auction Discovery**: Automatically discovers active Dutch auctions
|
||||
- **Data Scraping**: Fetches detailed lot information via Troostwijk's JSON API
|
||||
- **SQLite Storage**: Persists auction data, lots, images, and detected objects
|
||||
- **Image Processing**: Downloads and analyzes lot images using OpenCV YOLO object detection
|
||||
- **Free Notifications**: Real-time notifications when:
|
||||
- Bids change on monitored lots
|
||||
- Auctions are closing soon (within 5 minutes)
|
||||
- Via desktop notifications (Windows/macOS/Linux system tray) ✅
|
||||
- Optionally via email (Gmail SMTP - free) ✅
|
||||
|
||||
## Dependencies
|
||||
|
||||
All dependencies are managed via Maven (see `pom.xml`):
|
||||
|
||||
- **jsoup 1.17.2** - HTML parsing and HTTP client
|
||||
- **Jackson 2.17.0** - JSON processing
|
||||
- **SQLite JDBC 3.45.1.0** - Database operations
|
||||
- **JavaMail 1.6.2** - Email notifications (free)
|
||||
- **OpenCV 4.9.0** - Image processing and object detection
|
||||
|
||||
## Setup
|
||||
|
||||
### 1. Notification Options (Choose One)
|
||||
|
||||
#### Option A: Desktop Notifications Only ⭐ (Recommended - Zero Setup)
|
||||
|
||||
Desktop notifications work out of the box on:
|
||||
- **Windows**: System tray notifications
|
||||
- **macOS**: Notification Center
|
||||
- **Linux**: Desktop environment notifications (GNOME, KDE, etc.)
|
||||
|
||||
**No configuration required!** Just run with default settings:
|
||||
```bash
|
||||
export NOTIFICATION_CONFIG="desktop"
|
||||
# Or simply don't set it - desktop is the default
|
||||
```
|
||||
|
||||
#### Option B: Desktop + Email Notifications 📧 (Free Gmail)
|
||||
|
||||
1. Enable 2-Factor Authentication in your Google Account
|
||||
2. Go to: **Google Account → Security → 2-Step Verification → App passwords**
|
||||
3. Generate an app password for "Mail"
|
||||
4. Set environment variable:
|
||||
```bash
|
||||
export NOTIFICATION_CONFIG="smtp:your.email@gmail.com:your_app_password:recipient@example.com"
|
||||
```
|
||||
|
||||
**Format**: `smtp:username:app_password:recipient_email`
|
||||
|
||||
**Example**:
|
||||
```bash
|
||||
export NOTIFICATION_CONFIG="smtp:john.doe@gmail.com:abcd1234efgh5678:john.doe@gmail.com"
|
||||
```
|
||||
|
||||
**Note**: This is completely free using Gmail's SMTP server. No paid services required!
|
||||
|
||||
### 2. OpenCV Native Libraries
|
||||
|
||||
Download and install OpenCV native libraries for your platform:
|
||||
|
||||
**Windows:**
|
||||
```bash
|
||||
# Download from https://opencv.org/releases/
|
||||
# Extract and add to PATH or use:
|
||||
java -Djava.library.path="C:\opencv\build\java\x64" -jar scraper.jar
|
||||
```
|
||||
|
||||
**Linux:**
|
||||
```bash
|
||||
sudo apt-get install libopencv-dev
|
||||
```
|
||||
|
||||
**macOS:**
|
||||
```bash
|
||||
brew install opencv
|
||||
```
|
||||
|
||||
### 3. YOLO Model Files
|
||||
|
||||
Download YOLO model files for object detection:
|
||||
|
||||
```bash
|
||||
mkdir models
|
||||
cd models
|
||||
|
||||
# Download YOLOv4 config
|
||||
wget https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4.cfg
|
||||
|
||||
# Download YOLOv4 weights (245 MB)
|
||||
wget https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.weights
|
||||
|
||||
# Download COCO class names
|
||||
wget https://raw.githubusercontent.com/AlexeyAB/darknet/master/data/coco.names
|
||||
```
|
||||
|
||||
## Building
|
||||
|
||||
```bash
|
||||
mvn clean package
|
||||
```
|
||||
|
||||
This creates:
|
||||
- `target/troostwijk-scraper-1.0-SNAPSHOT.jar` - Regular JAR
|
||||
- `target/troostwijk-scraper-1.0-SNAPSHOT-jar-with-dependencies.jar` - Executable JAR with all dependencies
|
||||
|
||||
## Running
|
||||
|
||||
### Quick Start (Desktop Notifications Only)
|
||||
|
||||
```bash
|
||||
java -Djava.library.path="/path/to/opencv/lib" \
|
||||
-jar target/troostwijk-scraper-1.0-SNAPSHOT-jar-with-dependencies.jar
|
||||
```
|
||||
|
||||
### With Email Notifications
|
||||
|
||||
```bash
|
||||
export NOTIFICATION_CONFIG="smtp:your@gmail.com:app_password:your@gmail.com"
|
||||
|
||||
java -Djava.library.path="/path/to/opencv/lib" \
|
||||
-jar target/troostwijk-scraper-1.0-SNAPSHOT-jar-with-dependencies.jar
|
||||
```
|
||||
|
||||
### Using Maven
|
||||
|
||||
```bash
|
||||
mvn exec:java -Dexec.mainClass="com.auction.scraper.TroostwijkScraper"
|
||||
```
|
||||
|
||||
## Project Structure
|
||||
|
||||
```
|
||||
src/main/java/com/auction/scraper/
|
||||
├── TroostwijkScraper.java # Main scraper class
|
||||
│ ├── Lot # Domain model for auction lots
|
||||
│ ├── DatabaseService # SQLite operations
|
||||
│ ├── NotificationService # Desktop + Email notifications (FREE)
|
||||
│ └── ObjectDetectionService # OpenCV YOLO object detection
|
||||
└── Main.java # Entry point
|
||||
```
|
||||
|
||||
## Configuration
|
||||
|
||||
Edit `TroostwijkScraper.main()` to customize:
|
||||
|
||||
- **Database file**: `troostwijk.db` (SQLite database location)
|
||||
- **YOLO paths**: Model configuration and weights files
|
||||
- **Monitoring frequency**: Default is every 1 hour
|
||||
- **Closing alerts**: Default is 5 minutes before closing
|
||||
|
||||
## Database Schema
|
||||
|
||||
The scraper creates three tables:
|
||||
|
||||
**sales**
|
||||
- `sale_id` (PRIMARY KEY)
|
||||
- `title`, `location`, `closing_time`
|
||||
|
||||
**lots**
|
||||
- `lot_id` (PRIMARY KEY)
|
||||
- `sale_id`, `title`, `description`, `manufacturer`, `type`, `year`
|
||||
- `category`, `current_bid`, `currency`, `url`
|
||||
- `closing_time`, `closing_notified`
|
||||
|
||||
**images**
|
||||
- `id` (PRIMARY KEY)
|
||||
- `lot_id`, `url`, `file_path`, `labels` (detected objects)
|
||||
|
||||
## Notification Examples
|
||||
|
||||
### Desktop Notification
|
||||
![System Tray Notification]
|
||||
```
|
||||
🔔 Kavel bieding update
|
||||
Nieuw bod op kavel 12345: €150.00 (was €125.00)
|
||||
```
|
||||
|
||||
### Email Notification
|
||||
```
|
||||
From: your.email@gmail.com
|
||||
To: your.email@gmail.com
|
||||
Subject: [Troostwijk] Kavel bieding update
|
||||
|
||||
Nieuw bod op kavel 12345: €150.00 (was €125.00)
|
||||
```
|
||||
|
||||
**High Priority Alerts** (closing soon):
|
||||
```
|
||||
⚠️ Lot nearing closure
|
||||
Kavel 12345 sluit binnen 5 min.
|
||||
```
|
||||
|
||||
## Why This Approach?
|
||||
|
||||
✅ **100% Free** - No paid services (Twilio, Pushover, etc.)
|
||||
✅ **No External Dependencies** - Desktop notifications built into Java
|
||||
✅ **Works Offline** - Desktop notifications don't need internet
|
||||
✅ **Privacy First** - Your data stays on your machine
|
||||
✅ **Cross-Platform** - Windows, macOS, Linux supported
|
||||
✅ **Optional Email** - Add Gmail notifications if you want
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Desktop Notifications Not Showing
|
||||
|
||||
- **Windows**: Check if Java has notification permissions
|
||||
- **Linux**: Ensure you have a desktop environment running (not headless)
|
||||
- **macOS**: Check System Preferences → Notifications
|
||||
|
||||
### Email Not Sending
|
||||
|
||||
1. Verify 2FA is enabled in Google Account
|
||||
2. Confirm you're using an **App Password** (not your regular Gmail password)
|
||||
3. Check that "Less secure app access" is NOT needed (app passwords work with 2FA)
|
||||
4. Verify the SMTP format: `smtp:username:app_password:recipient`
|
||||
|
||||
## Notes
|
||||
|
||||
- Desktop notifications require a graphical environment (not headless servers)
|
||||
- For headless servers, use email-only notifications
|
||||
- Gmail SMTP is free and has generous limits (500 emails/day)
|
||||
- OpenCV native libraries must match your platform architecture
|
||||
- YOLO weights file is ~245 MB
|
||||
|
||||
## License
|
||||
|
||||
This is example code for educational purposes.
|
||||
80
models/coco.names
Normal file
80
models/coco.names
Normal file
@@ -0,0 +1,80 @@
|
||||
person
|
||||
bicycle
|
||||
car
|
||||
motorbike
|
||||
aeroplane
|
||||
bus
|
||||
train
|
||||
truck
|
||||
boat
|
||||
traffic light
|
||||
fire hydrant
|
||||
stop sign
|
||||
parking meter
|
||||
bench
|
||||
bird
|
||||
cat
|
||||
dog
|
||||
horse
|
||||
sheep
|
||||
cow
|
||||
elephant
|
||||
bear
|
||||
zebra
|
||||
giraffe
|
||||
backpack
|
||||
umbrella
|
||||
handbag
|
||||
tie
|
||||
suitcase
|
||||
frisbee
|
||||
skis
|
||||
snowboard
|
||||
sports ball
|
||||
kite
|
||||
baseball bat
|
||||
baseball glove
|
||||
skateboard
|
||||
surfboard
|
||||
tennis racket
|
||||
bottle
|
||||
wine glass
|
||||
cup
|
||||
fork
|
||||
knife
|
||||
spoon
|
||||
bowl
|
||||
banana
|
||||
apple
|
||||
sandwich
|
||||
orange
|
||||
broccoli
|
||||
carrot
|
||||
hot dog
|
||||
pizza
|
||||
donut
|
||||
cake
|
||||
chair
|
||||
sofa
|
||||
pottedplant
|
||||
bed
|
||||
diningtable
|
||||
toilet
|
||||
tvmonitor
|
||||
laptop
|
||||
mouse
|
||||
remote
|
||||
keyboard
|
||||
cell phone
|
||||
microwave
|
||||
oven
|
||||
toaster
|
||||
sink
|
||||
refrigerator
|
||||
book
|
||||
clock
|
||||
vase
|
||||
scissors
|
||||
teddy bear
|
||||
hair drier
|
||||
toothbrush
|
||||
1158
models/yolov4.cfg
Normal file
1158
models/yolov4.cfg
Normal file
File diff suppressed because it is too large
Load Diff
BIN
models/yolov4.weights
Normal file
BIN
models/yolov4.weights
Normal file
Binary file not shown.
@@ -354,6 +354,8 @@ public class TroostwijkScraper {
|
||||
* discovers Dutch auctions, scrapes lots, and begins monitoring.
|
||||
*/
|
||||
public static void main(String[] args) throws Exception {
|
||||
System.out.println("=== Troostwijk Auction Scraper ===\n");
|
||||
|
||||
// Configuration parameters (replace with your own values)
|
||||
String databaseFile = "troostwijk.db";
|
||||
|
||||
@@ -366,27 +368,34 @@ public class TroostwijkScraper {
|
||||
// Example: "smtp:your.email@gmail.com:abcd1234efgh5678:recipient@example.com"
|
||||
// Get app password: Google Account > Security > 2-Step Verification > App passwords
|
||||
|
||||
String yoloCfg = "models/yolov4.cfg"; // path to YOLO config file
|
||||
String yoloWeights = "models/yolov4.weights"; // path to YOLO weights file
|
||||
String yoloClasses = "models/coco.names"; // list of class names
|
||||
// YOLO model paths (optional - scraper works without object detection)
|
||||
String yoloCfg = "models/yolov4.cfg";
|
||||
String yoloWeights = "models/yolov4.weights";
|
||||
String yoloClasses = "models/coco.names";
|
||||
|
||||
// Load native OpenCV library
|
||||
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
|
||||
|
||||
System.out.println("Initializing scraper...");
|
||||
TroostwijkScraper scraper = new TroostwijkScraper(databaseFile, notificationConfig, "",
|
||||
yoloCfg, yoloWeights, yoloClasses);
|
||||
|
||||
// Step 1: Discover auctions in NL
|
||||
System.out.println("\n[1/3] Discovering Dutch auctions...");
|
||||
List<Integer> auctions = scraper.discoverDutchAuctions();
|
||||
System.out.println("Found auctions: " + auctions);
|
||||
System.out.println("✓ Found " + auctions.size() + " auctions: " + auctions);
|
||||
|
||||
// Step 2: Fetch lots for each auction
|
||||
System.out.println("\n[2/3] Fetching lot details...");
|
||||
for (int saleId : auctions) {
|
||||
System.out.println(" Processing sale " + saleId + "...");
|
||||
scraper.fetchLotsForSale(saleId);
|
||||
}
|
||||
|
||||
// Step 3: Start monitoring bids and closures
|
||||
System.out.println("\n[3/3] Starting monitoring service...");
|
||||
scraper.scheduleMonitoring();
|
||||
System.out.println("✓ Monitoring active. Press Ctrl+C to stop.\n");
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
@@ -710,23 +719,53 @@ public class TroostwijkScraper {
|
||||
}
|
||||
|
||||
/**
|
||||
* Service for performing object detection on images using OpenCV’s DNN
|
||||
* Service for performing object detection on images using OpenCV's DNN
|
||||
* module. The DNN module can load pre‑trained models from several
|
||||
* frameworks (Darknet, TensorFlow, ONNX, etc.)【784097309529506†L209-L233】. Here
|
||||
* we load a YOLO model (Darknet) by specifying the configuration and
|
||||
* weights files. For each image we run a forward pass and return a
|
||||
* list of detected class labels.
|
||||
*
|
||||
* If model files are not found, the service operates in disabled mode
|
||||
* and returns empty lists.
|
||||
*/
|
||||
static class ObjectDetectionService {
|
||||
private final Net net;
|
||||
private final List<String> classNames;
|
||||
private final boolean enabled;
|
||||
|
||||
ObjectDetectionService(String cfgPath, String weightsPath, String classNamesPath) throws IOException {
|
||||
// Load network
|
||||
this.net = Dnn.readNetFromDarknet(cfgPath, weightsPath);
|
||||
this.net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
||||
this.net.setPreferableTarget(DNN_TARGET_CPU);
|
||||
// Load class names (one per line)
|
||||
this.classNames = Files.readAllLines(Paths.get(classNamesPath));
|
||||
// Check if model files exist
|
||||
Path cfgFile = Paths.get(cfgPath);
|
||||
Path weightsFile = Paths.get(weightsPath);
|
||||
Path classNamesFile = Paths.get(classNamesPath);
|
||||
|
||||
if (!Files.exists(cfgFile) || !Files.exists(weightsFile) || !Files.exists(classNamesFile)) {
|
||||
System.out.println("⚠️ Object detection disabled: YOLO model files not found");
|
||||
System.out.println(" Expected files:");
|
||||
System.out.println(" - " + cfgPath);
|
||||
System.out.println(" - " + weightsPath);
|
||||
System.out.println(" - " + classNamesPath);
|
||||
System.out.println(" Scraper will continue without image analysis.");
|
||||
this.enabled = false;
|
||||
this.net = null;
|
||||
this.classNames = new ArrayList<>();
|
||||
return;
|
||||
}
|
||||
|
||||
try {
|
||||
// Load network
|
||||
this.net = Dnn.readNetFromDarknet(cfgPath, weightsPath);
|
||||
this.net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
||||
this.net.setPreferableTarget(DNN_TARGET_CPU);
|
||||
// Load class names (one per line)
|
||||
this.classNames = Files.readAllLines(classNamesFile);
|
||||
this.enabled = true;
|
||||
System.out.println("✓ Object detection enabled with YOLO");
|
||||
} catch (Exception e) {
|
||||
System.err.println("⚠️ Object detection disabled: " + e.getMessage());
|
||||
throw new IOException("Failed to initialize object detection", e);
|
||||
}
|
||||
}
|
||||
/**
|
||||
* Detects objects in the given image file and returns a list of
|
||||
@@ -736,9 +775,13 @@ public class TroostwijkScraper {
|
||||
* post‑processing【784097309529506†L324-L344】.
|
||||
*
|
||||
* @param imagePath absolute path to the image
|
||||
* @return list of detected class names
|
||||
* @return list of detected class names (empty if detection disabled)
|
||||
*/
|
||||
List<String> detectObjects(String imagePath) {
|
||||
if (!enabled) {
|
||||
return new ArrayList<>();
|
||||
}
|
||||
|
||||
List<String> labels = new ArrayList<>();
|
||||
Mat image = Imgcodecs.imread(imagePath);
|
||||
if (image.empty()) return labels;
|
||||
|
||||
BIN
target/classes/com/auction/scraper/Main.class
Normal file
BIN
target/classes/com/auction/scraper/Main.class
Normal file
Binary file not shown.
Binary file not shown.
BIN
target/classes/com/auction/scraper/TroostwijkScraper$Lot.class
Normal file
BIN
target/classes/com/auction/scraper/TroostwijkScraper$Lot.class
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
target/classes/com/auction/scraper/TroostwijkScraper.class
Normal file
BIN
target/classes/com/auction/scraper/TroostwijkScraper.class
Normal file
Binary file not shown.
BIN
troostwijk.db
Normal file
BIN
troostwijk.db
Normal file
Binary file not shown.
Reference in New Issue
Block a user