This commit is contained in:
mike
2025-12-13 11:53:29 +01:00
parent 2bd4f93777
commit 5098f5b291
8 changed files with 100 additions and 806 deletions

View File

@@ -3,83 +3,42 @@ from typing import Dict, Set, List
from collections import Counter
class FolderAnalyzer:
def __init__(self):
self.manifest_files = {
'java': ['pom.xml', 'build.gradle', 'build.gradle.kts'],
'javascript': ['package.json', 'yarn.lock', 'package-lock.json'],
'python': ['pyproject.toml', 'setup.py', 'requirements.txt', 'Pipfile'],
'go': ['go.mod', 'go.sum'],
'rust': ['Cargo.toml', 'Cargo.lock'],
'docker': ['Dockerfile', 'docker-compose.yml', 'docker-compose.yaml'],
'k8s': ['helm', 'kustomization.yaml', 'deployment.yaml']
}
self.intent_keywords = {
'infrastructure': ['infra', 'deploy', 'k8s', 'docker', 'terraform', 'ansible'],
'application': ['app', 'service', 'api', 'server', 'client'],
'data': ['data', 'dataset', 'models', 'training', 'ml'],
'documentation': ['docs', 'documentation', 'wiki', 'readme'],
'testing': ['test', 'tests', 'spec', 'e2e', 'integration'],
'build': ['build', 'dist', 'target', 'out', 'bin'],
'config': ['config', 'conf', 'settings', 'env']
}
def __init__(self):
self.manifest_files = {'java': ['pom.xml', 'build.gradle', 'build.gradle.kts'], 'javascript': ['package.json', 'yarn.lock', 'package-lock.json'], 'python': ['pyproject.toml', 'setup.py', 'requirements.txt', 'Pipfile'], 'go': ['go.mod', 'go.sum'], 'rust': ['Cargo.toml', 'Cargo.lock'], 'docker': ['Dockerfile', 'docker-compose.yml', 'docker-compose.yaml'], 'k8s': ['helm', 'kustomization.yaml', 'deployment.yaml']}
self.intent_keywords = {'infrastructure': ['infra', 'deploy', 'k8s', 'docker', 'terraform', 'ansible'], 'application': ['app', 'service', 'api', 'server', 'client'], 'data': ['data', 'dataset', 'models', 'training', 'ml'], 'documentation': ['docs', 'documentation', 'wiki', 'readme'], 'testing': ['test', 'tests', 'spec', 'e2e', 'integration'], 'build': ['build', 'dist', 'target', 'out', 'bin'], 'config': ['config', 'conf', 'settings', 'env']}
def analyze_folder(self, folder_path: Path, files: List[Dict]) -> Dict:
files_list = [Path(f['path']) for f in files]
has_readme = any('readme' in f.name.lower() for f in files_list)
has_git = any('.git' in str(f) for f in files_list)
has_readme = any(('readme' in f.name.lower() for f in files_list))
has_git = any(('.git' in str(f) for f in files_list))
manifest_types = self._detect_manifests(files_list)
has_manifest = len(manifest_types) > 0
file_types = Counter(f.suffix.lower() for f in files_list if f.suffix)
file_types = Counter((f.suffix.lower() for f in files_list if f.suffix))
dominant_types = dict(file_types.most_common(10))
intent = self._infer_intent(folder_path.name.lower(), files_list)
project_type = self._infer_project_type(manifest_types, dominant_types)
structure = {
'depth': len(folder_path.parts),
'has_src': any('src' in str(f) for f in files_list[:20]),
'has_tests': any('test' in str(f) for f in files_list[:20]),
'has_docs': any('doc' in str(f) for f in files_list[:20])
}
return {
'has_readme': has_readme,
'has_git': has_git,
'has_manifest': has_manifest,
'manifest_types': manifest_types,
'dominant_file_types': dominant_types,
'project_type': project_type,
'intent': intent,
'structure': structure
}
structure = {'depth': len(folder_path.parts), 'has_src': any(('src' in str(f) for f in files_list[:20])), 'has_tests': any(('test' in str(f) for f in files_list[:20])), 'has_docs': any(('doc' in str(f) for f in files_list[:20]))}
return {'has_readme': has_readme, 'has_git': has_git, 'has_manifest': has_manifest, 'manifest_types': manifest_types, 'dominant_file_types': dominant_types, 'project_type': project_type, 'intent': intent, 'structure': structure}
def _detect_manifests(self, files: List[Path]) -> List[str]:
detected = []
file_names = {f.name for f in files}
for tech, manifests in self.manifest_files.items():
if any(m in file_names for m in manifests):
if any((m in file_names for m in manifests)):
detected.append(tech)
return detected
def _infer_intent(self, folder_name: str, files: List[Path]) -> str:
file_str = ' '.join(str(f) for f in files[:50])
file_str = ' '.join((str(f) for f in files[:50]))
for intent, keywords in self.intent_keywords.items():
if any(kw in folder_name or kw in file_str.lower() for kw in keywords):
if any((kw in folder_name or kw in file_str.lower() for kw in keywords)):
return intent
return 'unknown'
def _infer_project_type(self, manifests: List[str], file_types: Dict) -> str:
if manifests:
return manifests[0]
if '.py' in file_types and file_types.get('.py', 0) > 5:
return 'python'
if '.js' in file_types or '.ts' in file_types:
@@ -88,23 +47,17 @@ class FolderAnalyzer:
return 'java'
if '.go' in file_types:
return 'go'
return 'mixed'
def generate_summary(self, folder_analysis: Dict, readme_text: str = None) -> str:
def generate_summary(self, folder_analysis: Dict, readme_text: str=None) -> str:
parts = []
if folder_analysis.get('project_type'):
parts.append(f"{folder_analysis['project_type']} project")
if folder_analysis.get('intent'):
parts.append(f"for {folder_analysis['intent']}")
if folder_analysis.get('manifest_types'):
parts.append(f"using {', '.join(folder_analysis['manifest_types'])}")
if readme_text:
first_para = readme_text.split('\n\n')[0][:200]
parts.append(f"Description: {first_para}")
parts.append(f'Description: {first_para}')
return ' '.join(parts) if parts else 'Mixed content folder'

View File

@@ -1,3 +1,2 @@
from .classifier import FileClassifier
__all__ = ['FileClassifier']

View File

@@ -1,72 +1,30 @@
"""Protocol definitions for the classification package"""
from typing import Protocol, Optional
from pathlib import Path
from dataclasses import dataclass
@dataclass
class ClassificationRule:
"""Rule for classifying files"""
name: str
category: str
patterns: list[str]
priority: int = 0
description: str = ""
description: str = ''
class IClassifier(Protocol):
"""Protocol for classification operations"""
def classify(self, path: Path, file_type: Optional[str] = None) -> Optional[str]:
"""Classify a file path
Args:
path: Path to classify
file_type: Optional file type hint
Returns:
Category name or None if no match
"""
def classify(self, path: Path, file_type: Optional[str]=None) -> Optional[str]:
...
def get_category_rules(self, category: str) -> list[ClassificationRule]:
"""Get all rules for a category
Args:
category: Category name
Returns:
List of rules for the category
"""
...
class IRuleEngine(Protocol):
"""Protocol for rule-based classification"""
def add_rule(self, rule: ClassificationRule) -> None:
"""Add a classification rule
Args:
rule: Rule to add
"""
...
def remove_rule(self, rule_name: str) -> None:
"""Remove a rule by name
Args:
rule_name: Name of rule to remove
"""
...
def match_path(self, path: Path) -> Optional[str]:
"""Match path against rules
Args:
path: Path to match
Returns:
Category name or None if no match
"""
...

View File

@@ -3,122 +3,72 @@ from typing import List, Set, Dict, Tuple
import re
class FileClassifier:
def __init__(self):
self.build_patterns = {
'node_modules', '__pycache__', '.pytest_cache', 'target', 'build', 'dist',
'.gradle', 'bin', 'obj', '.next', '.nuxt', 'vendor', '.venv', 'venv',
'site-packages', 'bower_components', 'jspm_packages'
}
self.build_patterns = {'node_modules', '__pycache__', '.pytest_cache', 'target', 'build', 'dist', '.gradle', 'bin', 'obj', '.next', '.nuxt', 'vendor', '.venv', 'venv', 'site-packages', 'bower_components', 'jspm_packages'}
self.artifact_patterns = {'java': {'.jar', '.war', '.ear', '.class'}, 'python': {'.pyc', '.pyo', '.whl', '.egg'}, 'node': {'node_modules'}, 'go': {'vendor', 'pkg'}, 'rust': {'target'}, 'docker': {'.dockerignore', 'Dockerfile'}}
self.category_keywords = {'apps': {'app', 'application', 'service', 'api', 'server', 'client'}, 'infra': {'infrastructure', 'devops', 'docker', 'kubernetes', 'terraform', 'ansible', 'gitea', 'jenkins'}, 'dev': {'project', 'workspace', 'repo', 'src', 'code', 'dev'}, 'cache': {'cache', 'temp', 'tmp', '.cache'}, 'databases': {'postgres', 'mysql', 'redis', 'mongo', 'db', 'database'}, 'backups': {'backup', 'bak', 'snapshot', 'archive'}, 'user': {'documents', 'pictures', 'videos', 'downloads', 'desktop', 'music'}, 'artifacts': {'build', 'dist', 'release', 'output'}, 'temp': {'tmp', 'temp', 'staging', 'processing'}}
self.media_extensions = {'video': {'.mp4', '.mkv', '.avi', '.mov', '.wmv', '.flv', '.webm'}, 'audio': {'.mp3', '.flac', '.wav', '.ogg', '.m4a', '.aac'}, 'image': {'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.svg', '.webp'}, 'document': {'.pdf', '.doc', '.docx', '.txt', '.md', '.odt'}, 'spreadsheet': {'.xls', '.xlsx', '.csv', '.ods'}, 'presentation': {'.ppt', '.pptx', '.odp'}}
self.code_extensions = {'.py', '.js', '.ts', '.java', '.go', '.rs', '.c', '.cpp', '.h', '.cs', '.rb', '.php', '.swift', '.kt', '.scala', '.clj', '.r'}
self.artifact_patterns = {
'java': {'.jar', '.war', '.ear', '.class'},
'python': {'.pyc', '.pyo', '.whl', '.egg'},
'node': {'node_modules'},
'go': {'vendor', 'pkg'},
'rust': {'target'},
'docker': {'.dockerignore', 'Dockerfile'}
}
self.category_keywords = {
'apps': {'app', 'application', 'service', 'api', 'server', 'client'},
'infra': {'infrastructure', 'devops', 'docker', 'kubernetes', 'terraform', 'ansible', 'gitea', 'jenkins'},
'dev': {'project', 'workspace', 'repo', 'src', 'code', 'dev'},
'cache': {'cache', 'temp', 'tmp', '.cache'},
'databases': {'postgres', 'mysql', 'redis', 'mongo', 'db', 'database'},
'backups': {'backup', 'bak', 'snapshot', 'archive'},
'user': {'documents', 'pictures', 'videos', 'downloads', 'desktop', 'music'},
'artifacts': {'build', 'dist', 'release', 'output'},
'temp': {'tmp', 'temp', 'staging', 'processing'}
}
self.media_extensions = {
'video': {'.mp4', '.mkv', '.avi', '.mov', '.wmv', '.flv', '.webm'},
'audio': {'.mp3', '.flac', '.wav', '.ogg', '.m4a', '.aac'},
'image': {'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.svg', '.webp'},
'document': {'.pdf', '.doc', '.docx', '.txt', '.md', '.odt'},
'spreadsheet': {'.xls', '.xlsx', '.csv', '.ods'},
'presentation': {'.ppt', '.pptx', '.odp'}
}
self.code_extensions = {
'.py', '.js', '.ts', '.java', '.go', '.rs', '.c', '.cpp', '.h',
'.cs', '.rb', '.php', '.swift', '.kt', '.scala', '.clj', '.r'
}
def classify_path(self, path: str, size: int = 0) -> Tuple[Set[str], str, bool]:
def classify_path(self, path: str, size: int=0) -> Tuple[Set[str], str, bool]:
p = Path(path)
labels = set()
primary_category = 'misc'
is_build_artifact = False
parts = p.parts
name_lower = p.name.lower()
for part in parts:
part_lower = part.lower()
if part_lower in self.build_patterns:
is_build_artifact = True
labels.add('build-artifact')
break
if is_build_artifact:
for artifact_type, patterns in self.artifact_patterns.items():
if any(part.lower() in patterns for part in parts) or p.suffix in patterns:
if any((part.lower() in patterns for part in parts)) or p.suffix in patterns:
primary_category = f'artifacts/{artifact_type}'
labels.add('artifact')
return labels, primary_category, is_build_artifact
return (labels, primary_category, is_build_artifact)
if '.git' in parts:
labels.add('vcs')
primary_category = 'infra/git-infrastructure'
return labels, primary_category, False
return (labels, primary_category, False)
for category, keywords in self.category_keywords.items():
if any(kw in name_lower or any(kw in part.lower() for part in parts) for kw in keywords):
if any((kw in name_lower or any((kw in part.lower() for part in parts)) for kw in keywords)):
labels.add(category)
primary_category = category
break
for media_type, extensions in self.media_extensions.items():
if p.suffix.lower() in extensions:
labels.add(media_type)
labels.add('media')
primary_category = f'user/{media_type}'
break
if p.suffix.lower() in self.code_extensions:
labels.add('code')
if primary_category == 'misc':
primary_category = 'dev'
if size > 100 * 1024 * 1024:
labels.add('large-file')
if any(kw in name_lower for kw in ['test', 'spec', 'mock']):
if any((kw in name_lower for kw in ['test', 'spec', 'mock'])):
labels.add('test')
if any(kw in name_lower for kw in ['config', 'settings', 'env']):
if any((kw in name_lower for kw in ['config', 'settings', 'env'])):
labels.add('config')
return labels, primary_category, is_build_artifact
return (labels, primary_category, is_build_artifact)
def suggest_target_path(self, source_path: str, category: str, labels: Set[str]) -> str:
p = Path(source_path)
if 'build-artifact' in labels:
return f'trash/build-artifacts/{source_path}'
if category.startswith('artifacts/'):
artifact_type = category.split('/')[-1]
return f'artifacts/{artifact_type}/{p.name}'
if category.startswith('user/'):
media_type = category.split('/')[-1]
return f'user/{media_type}/{p.name}'
parts = [part for part in p.parts if part not in self.build_patterns]
if len(parts) > 3:
project_name = parts[0] if parts else 'misc'
return f'{category}/{project_name}/{"/".join(parts[1:])}'
return f"{category}/{project_name}/{'/'.join(parts[1:])}"
return f'{category}/{source_path}'

View File

@@ -1,350 +1,148 @@
"""Main classification engine"""
from pathlib import Path
from typing import Optional, Callable
import psycopg2
from .rules import RuleBasedClassifier
from .ml import create_ml_classifier, DummyMLClassifier
from ..shared.models import ProcessingStats
from ..shared.config import DatabaseConfig
from ..shared.logger import ProgressLogger
class ClassificationEngine:
"""Engine for classifying files"""
def __init__(
self,
db_config: DatabaseConfig,
logger: ProgressLogger,
use_ml: bool = False
):
"""Initialize classification engine
Args:
db_config: Database configuration
logger: Progress logger
use_ml: Whether to use ML classification in addition to rules
"""
def __init__(self, db_config: DatabaseConfig, logger: ProgressLogger, use_ml: bool=False):
self.db_config = db_config
self.logger = logger
self.rule_classifier = RuleBasedClassifier()
self.ml_classifier = create_ml_classifier() if use_ml else None
self.use_ml = use_ml and not isinstance(self.ml_classifier, DummyMLClassifier)
self.use_ml = use_ml and (not isinstance(self.ml_classifier, DummyMLClassifier))
self._connection = None
def _get_connection(self):
"""Get or create database connection"""
if self._connection is None or self._connection.closed:
self._connection = psycopg2.connect(
host=self.db_config.host,
port=self.db_config.port,
database=self.db_config.database,
user=self.db_config.user,
password=self.db_config.password
)
self._connection = psycopg2.connect(host=self.db_config.host, port=self.db_config.port, database=self.db_config.database, user=self.db_config.user, password=self.db_config.password)
return self._connection
def classify_all(
self,
disk: Optional[str] = None,
batch_size: int = 1000,
progress_callback: Optional[Callable[[int, int, ProcessingStats], None]] = None
) -> ProcessingStats:
"""Classify all files in database
Args:
disk: Optional disk filter
batch_size: Number of files to process per batch
progress_callback: Optional callback for progress updates
Returns:
ProcessingStats with classification statistics
"""
self.logger.section("Starting Classification")
def classify_all(self, disk: Optional[str]=None, batch_size: int=1000, progress_callback: Optional[Callable[[int, int, ProcessingStats], None]]=None) -> ProcessingStats:
self.logger.section('Starting Classification')
conn = self._get_connection()
cursor = conn.cursor()
# Get files without categories
if disk:
cursor.execute("""
SELECT path, checksum
FROM files
WHERE disk_label = %s AND category IS NULL
""", (disk,))
cursor.execute('\n SELECT path, checksum\n FROM files\n WHERE disk_label = %s AND category IS NULL\n ', (disk,))
else:
cursor.execute("""
SELECT path, checksum
FROM files
WHERE category IS NULL
""")
cursor.execute('\n SELECT path, checksum\n FROM files\n WHERE category IS NULL\n ')
files_to_classify = cursor.fetchall()
total_files = len(files_to_classify)
self.logger.info(f"Found {total_files} files to classify")
self.logger.info(f'Found {total_files} files to classify')
stats = ProcessingStats()
batch = []
for path_str, checksum in files_to_classify:
path = Path(path_str)
# Classify using rules first
category = self.rule_classifier.classify(path)
# If no rule match and ML is available, try ML
if category is None and self.use_ml and self.ml_classifier:
category = self.ml_classifier.classify(path)
# If still no category, assign default
if category is None:
category = "temp/processing"
category = 'temp/processing'
batch.append((category, str(path)))
stats.files_processed += 1
# Batch update
if len(batch) >= batch_size:
self._update_categories(cursor, batch)
conn.commit()
batch.clear()
# Progress callback
if progress_callback:
progress_callback(stats.files_processed, total_files, stats)
# Log progress
if stats.files_processed % (batch_size * 10) == 0:
self.logger.progress(
stats.files_processed,
total_files,
prefix="Files classified",
elapsed_seconds=stats.elapsed_seconds
)
# Update remaining batch
self.logger.progress(stats.files_processed, total_files, prefix='Files classified', elapsed_seconds=stats.elapsed_seconds)
if batch:
self._update_categories(cursor, batch)
conn.commit()
stats.files_succeeded = stats.files_processed
cursor.close()
self.logger.info(
f"Classification complete: {stats.files_processed} files in {stats.elapsed_seconds:.1f}s"
)
self.logger.info(f'Classification complete: {stats.files_processed} files in {stats.elapsed_seconds:.1f}s')
return stats
def _update_categories(self, cursor, batch: list[tuple[str, str]]):
"""Update categories in batch
Args:
cursor: Database cursor
batch: List of (category, path) tuples
"""
from psycopg2.extras import execute_batch
query = """
UPDATE files
SET category = %s
WHERE path = %s
"""
query = '\n UPDATE files\n SET category = %s\n WHERE path = %s\n '
execute_batch(cursor, query, batch)
def classify_path(self, path: Path) -> Optional[str]:
"""Classify a single path
Args:
path: Path to classify
Returns:
Category name or None
"""
# Try rules first
category = self.rule_classifier.classify(path)
# Try ML if available
if category is None and self.use_ml and self.ml_classifier:
category = self.ml_classifier.classify(path)
return category
def get_category_stats(self) -> dict[str, dict]:
"""Get statistics by category
Returns:
Dictionary mapping category to statistics
"""
conn = self._get_connection()
cursor = conn.cursor()
cursor.execute("""
SELECT
category,
COUNT(*) as file_count,
SUM(size) as total_size
FROM files
WHERE category IS NOT NULL
GROUP BY category
ORDER BY total_size DESC
""")
cursor.execute('\n SELECT\n category,\n COUNT(*) as file_count,\n SUM(size) as total_size\n FROM files\n WHERE category IS NOT NULL\n GROUP BY category\n ORDER BY total_size DESC\n ')
stats = {}
for category, file_count, total_size in cursor.fetchall():
stats[category] = {
'file_count': file_count,
'total_size': total_size
}
stats[category] = {'file_count': file_count, 'total_size': total_size}
cursor.close()
return stats
def get_uncategorized_count(self) -> int:
"""Get count of uncategorized files
Returns:
Number of files without category
"""
conn = self._get_connection()
cursor = conn.cursor()
cursor.execute("SELECT COUNT(*) FROM files WHERE category IS NULL")
cursor.execute('SELECT COUNT(*) FROM files WHERE category IS NULL')
count = cursor.fetchone()[0]
cursor.close()
return count
def reclassify_category(
self,
old_category: str,
new_category: str
) -> int:
"""Reclassify all files in a category
Args:
old_category: Current category
new_category: New category
Returns:
Number of files reclassified
"""
self.logger.info(f"Reclassifying {old_category} -> {new_category}")
def reclassify_category(self, old_category: str, new_category: str) -> int:
self.logger.info(f'Reclassifying {old_category} -> {new_category}')
conn = self._get_connection()
cursor = conn.cursor()
cursor.execute("""
UPDATE files
SET category = %s
WHERE category = %s
""", (new_category, old_category))
cursor.execute('\n UPDATE files\n SET category = %s\n WHERE category = %s\n ', (new_category, old_category))
count = cursor.rowcount
conn.commit()
cursor.close()
self.logger.info(f"Reclassified {count} files")
self.logger.info(f'Reclassified {count} files')
return count
def train_ml_classifier(
self,
min_samples: int = 10
) -> bool:
"""Train ML classifier from existing categorized data
Args:
min_samples: Minimum samples per category
Returns:
True if training successful
"""
def train_ml_classifier(self, min_samples: int=10) -> bool:
if not self.use_ml or self.ml_classifier is None:
self.logger.warning("ML classifier not available")
self.logger.warning('ML classifier not available')
return False
self.logger.subsection("Training ML Classifier")
self.logger.subsection('Training ML Classifier')
conn = self._get_connection()
cursor = conn.cursor()
# Get categorized files
cursor.execute("""
SELECT path, category
FROM files
WHERE category IS NOT NULL
""")
cursor.execute('\n SELECT path, category\n FROM files\n WHERE category IS NOT NULL\n ')
training_data = [(Path(path), category) for path, category in cursor.fetchall()]
cursor.close()
if not training_data:
self.logger.warning("No training data available")
self.logger.warning('No training data available')
return False
# Count samples per category
category_counts = {}
for _, category in training_data:
category_counts[category] = category_counts.get(category, 0) + 1
# Filter categories with enough samples
filtered_data = [
(path, category)
for path, category in training_data
if category_counts[category] >= min_samples
]
filtered_data = [(path, category) for path, category in training_data if category_counts[category] >= min_samples]
if not filtered_data:
self.logger.warning(f"No categories with >= {min_samples} samples")
self.logger.warning(f'No categories with >= {min_samples} samples')
return False
self.logger.info(f"Training with {len(filtered_data)} samples")
self.logger.info(f'Training with {len(filtered_data)} samples')
try:
self.ml_classifier.train(filtered_data)
self.logger.info("ML classifier trained successfully")
self.logger.info('ML classifier trained successfully')
return True
except Exception as e:
self.logger.error(f"Failed to train ML classifier: {e}")
self.logger.error(f'Failed to train ML classifier: {e}')
return False
def get_all_categories(self) -> list[str]:
"""Get all categories from database
Returns:
List of category names
"""
conn = self._get_connection()
cursor = conn.cursor()
cursor.execute("""
SELECT DISTINCT category
FROM files
WHERE category IS NOT NULL
ORDER BY category
""")
cursor.execute('\n SELECT DISTINCT category\n FROM files\n WHERE category IS NOT NULL\n ORDER BY category\n ')
categories = [row[0] for row in cursor.fetchall()]
cursor.close()
return categories
def close(self):
"""Close database connection"""
if self._connection and not self._connection.closed:
if self._connection and (not self._connection.closed):
self._connection.close()
def __enter__(self):
"""Context manager entry"""
return self
def __exit__(self, exc_type, exc_val, exc_tb):
"""Context manager exit"""
self.close()

View File

@@ -1,8 +1,6 @@
"""ML-based classification (optional, using sklearn if available)"""
from pathlib import Path
from typing import Optional, List, Tuple
import pickle
try:
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
@@ -11,100 +9,41 @@ try:
except ImportError:
SKLEARN_AVAILABLE = False
class MLClassifier:
"""Machine learning-based file classifier
Uses path-based features and optional metadata to classify files.
Requires scikit-learn to be installed.
"""
def __init__(self):
"""Initialize ML classifier"""
if not SKLEARN_AVAILABLE:
raise ImportError(
"scikit-learn is required for ML classification. "
"Install with: pip install scikit-learn"
)
raise ImportError('scikit-learn is required for ML classification. Install with: pip install scikit-learn')
self.model: Optional[Pipeline] = None
self.categories: List[str] = []
self._is_trained = False
def _extract_features(self, path: Path) -> str:
"""Extract features from path
Args:
path: Path to extract features from
Returns:
Feature string
"""
# Convert path to feature string
# Include: path parts, extension, filename
parts = path.parts
extension = path.suffix
filename = path.name
features = []
# Add path components
features.extend(parts)
# Add extension
if extension:
features.append(f"ext:{extension}")
# Add filename components (split on common separators)
features.append(f'ext:{extension}')
name_parts = filename.replace('-', ' ').replace('_', ' ').replace('.', ' ').split()
features.extend([f"name:{part}" for part in name_parts])
features.extend([f'name:{part}' for part in name_parts])
return ' '.join(features)
def train(self, training_data: List[Tuple[Path, str]]) -> None:
"""Train the classifier
Args:
training_data: List of (path, category) tuples
"""
if not training_data:
raise ValueError("Training data cannot be empty")
# Extract features and labels
raise ValueError('Training data cannot be empty')
X = [self._extract_features(path) for path, _ in training_data]
y = [category for _, category in training_data]
# Store unique categories
self.categories = sorted(set(y))
# Create and train pipeline
self.model = Pipeline([
('tfidf', TfidfVectorizer(
max_features=1000,
ngram_range=(1, 2),
min_df=1
)),
('classifier', MultinomialNB())
])
self.model = Pipeline([('tfidf', TfidfVectorizer(max_features=1000, ngram_range=(1, 2), min_df=1)), ('classifier', MultinomialNB())])
self.model.fit(X, y)
self._is_trained = True
def classify(self, path: Path, file_type: Optional[str] = None) -> Optional[str]:
"""Classify a file path
Args:
path: Path to classify
file_type: Optional file type hint (not used in ML classifier)
Returns:
Category name or None if not trained
"""
def classify(self, path: Path, file_type: Optional[str]=None) -> Optional[str]:
if not self._is_trained or self.model is None:
return None
features = self._extract_features(path)
try:
prediction = self.model.predict([features])[0]
return prediction
@@ -112,158 +51,77 @@ class MLClassifier:
return None
def predict_proba(self, path: Path) -> dict[str, float]:
"""Get prediction probabilities for all categories
Args:
path: Path to classify
Returns:
Dictionary mapping category to probability
"""
if not self._is_trained or self.model is None:
return {}
features = self._extract_features(path)
try:
probabilities = self.model.predict_proba([features])[0]
return {
category: float(prob)
for category, prob in zip(self.categories, probabilities)
}
return {category: float(prob) for category, prob in zip(self.categories, probabilities)}
except Exception:
return {}
def save_model(self, model_path: Path) -> None:
"""Save trained model to disk
Args:
model_path: Path to save model
"""
if not self._is_trained:
raise ValueError("Cannot save untrained model")
model_data = {
'model': self.model,
'categories': self.categories,
'is_trained': self._is_trained
}
raise ValueError('Cannot save untrained model')
model_data = {'model': self.model, 'categories': self.categories, 'is_trained': self._is_trained}
with open(model_path, 'wb') as f:
pickle.dump(model_data, f)
def load_model(self, model_path: Path) -> None:
"""Load trained model from disk
Args:
model_path: Path to model file
"""
with open(model_path, 'rb') as f:
model_data = pickle.load(f)
self.model = model_data['model']
self.categories = model_data['categories']
self._is_trained = model_data['is_trained']
@property
def is_trained(self) -> bool:
"""Check if model is trained"""
return self._is_trained
class DummyMLClassifier:
"""Dummy ML classifier for when sklearn is not available"""
def __init__(self):
"""Initialize dummy classifier"""
pass
def train(self, training_data: List[Tuple[Path, str]]) -> None:
"""Dummy train method"""
raise NotImplementedError(
"ML classification requires scikit-learn. "
"Install with: pip install scikit-learn"
)
raise NotImplementedError('ML classification requires scikit-learn. Install with: pip install scikit-learn')
def classify(self, path: Path, file_type: Optional[str] = None) -> Optional[str]:
"""Dummy classify method"""
def classify(self, path: Path, file_type: Optional[str]=None) -> Optional[str]:
return None
def predict_proba(self, path: Path) -> dict[str, float]:
"""Dummy predict_proba method"""
return {}
def save_model(self, model_path: Path) -> None:
"""Dummy save_model method"""
raise NotImplementedError("ML classification not available")
raise NotImplementedError('ML classification not available')
def load_model(self, model_path: Path) -> None:
"""Dummy load_model method"""
raise NotImplementedError("ML classification not available")
raise NotImplementedError('ML classification not available')
@property
def is_trained(self) -> bool:
"""Check if model is trained"""
return False
def create_ml_classifier() -> MLClassifier | DummyMLClassifier:
"""Create ML classifier if sklearn is available, otherwise return dummy
Returns:
MLClassifier or DummyMLClassifier
"""
if SKLEARN_AVAILABLE:
return MLClassifier()
else:
return DummyMLClassifier()
def train_from_database(
db_connection,
min_samples_per_category: int = 10
) -> MLClassifier | DummyMLClassifier:
"""Train ML classifier from database
Args:
db_connection: Database connection
min_samples_per_category: Minimum samples required per category
Returns:
Trained classifier
"""
def train_from_database(db_connection, min_samples_per_category: int=10) -> MLClassifier | DummyMLClassifier:
classifier = create_ml_classifier()
if isinstance(classifier, DummyMLClassifier):
return classifier
# Query classified files from database
cursor = db_connection.cursor()
cursor.execute("""
SELECT path, category
FROM files
WHERE category IS NOT NULL
""")
cursor.execute('\n SELECT path, category\n FROM files\n WHERE category IS NOT NULL\n ')
training_data = [(Path(path), category) for path, category in cursor.fetchall()]
cursor.close()
if not training_data:
return classifier
# Count samples per category
category_counts = {}
for _, category in training_data:
category_counts[category] = category_counts.get(category, 0) + 1
# Filter to categories with enough samples
filtered_data = [
(path, category)
for path, category in training_data
if category_counts[category] >= min_samples_per_category
]
filtered_data = [(path, category) for path, category in training_data if category_counts[category] >= min_samples_per_category]
if filtered_data:
classifier.train(filtered_data)
return classifier

View File

@@ -1,282 +1,60 @@
"""Rule-based classification engine"""
from pathlib import Path
from typing import Optional
import fnmatch
from ._protocols import ClassificationRule
class RuleBasedClassifier:
"""Rule-based file classifier using pattern matching"""
def __init__(self):
"""Initialize rule-based classifier"""
self.rules: list[ClassificationRule] = []
self._load_default_rules()
def _load_default_rules(self):
"""Load default classification rules based on ARCHITECTURE.md"""
# Build artifacts and caches
self.add_rule(ClassificationRule(
name="maven_cache",
category="artifacts/java/maven",
patterns=["**/.m2/**", "**/.maven/**", "**/maven-central-cache/**"],
priority=10,
description="Maven repository and cache"
))
self.add_rule(ClassificationRule(
name="gradle_cache",
category="artifacts/java/gradle",
patterns=["**/.gradle/**", "**/gradle-cache/**", "**/gradle-build-cache/**"],
priority=10,
description="Gradle cache and artifacts"
))
self.add_rule(ClassificationRule(
name="python_cache",
category="cache/pycache",
patterns=["**/__pycache__/**", "**/*.pyc", "**/*.pyo"],
priority=10,
description="Python cache files"
))
self.add_rule(ClassificationRule(
name="python_artifacts",
category="artifacts/python",
patterns=["**/pip-cache/**", "**/pypi-cache/**", "**/wheelhouse/**"],
priority=10,
description="Python package artifacts"
))
self.add_rule(ClassificationRule(
name="node_modules",
category="cache/node_modules-archive",
patterns=["**/node_modules/**"],
priority=10,
description="Node.js modules"
))
self.add_rule(ClassificationRule(
name="node_cache",
category="artifacts/node",
patterns=["**/.npm/**", "**/npm-registry/**", "**/yarn-cache/**", "**/pnpm-store/**"],
priority=10,
description="Node.js package managers cache"
))
self.add_rule(ClassificationRule(
name="go_cache",
category="artifacts/go",
patterns=["**/goproxy-cache/**", "**/go/pkg/mod/**", "**/go-module-cache/**"],
priority=10,
description="Go module cache"
))
# Version control
self.add_rule(ClassificationRule(
name="git_repos",
category="development/git-infrastructure",
patterns=["**/.git/**", "**/gitea/repositories/**"],
priority=15,
description="Git repositories and infrastructure"
))
self.add_rule(ClassificationRule(
name="gitea",
category="development/gitea",
patterns=["**/gitea/**"],
priority=12,
description="Gitea server data"
))
# Databases
self.add_rule(ClassificationRule(
name="postgresql",
category="databases/postgresql",
patterns=["**/postgresql/**", "**/postgres/**", "**/*.sql"],
priority=10,
description="PostgreSQL databases"
))
self.add_rule(ClassificationRule(
name="mysql",
category="databases/mysql",
patterns=["**/mysql/**", "**/mariadb/**"],
priority=10,
description="MySQL/MariaDB databases"
))
self.add_rule(ClassificationRule(
name="mongodb",
category="databases/mongodb",
patterns=["**/mongodb/**", "**/mongo/**"],
priority=10,
description="MongoDB databases"
))
self.add_rule(ClassificationRule(
name="redis",
category="databases/redis",
patterns=["**/redis/**", "**/*.rdb"],
priority=10,
description="Redis databases"
))
self.add_rule(ClassificationRule(
name="sqlite",
category="databases/sqlite",
patterns=["**/*.db", "**/*.sqlite", "**/*.sqlite3"],
priority=8,
description="SQLite databases"
))
# LLM and AI models
self.add_rule(ClassificationRule(
name="llm_models",
category="cache/llm-models",
patterns=[
"**/hugging-face/**",
"**/huggingface/**",
"**/.cache/huggingface/**",
"**/models/**/*.bin",
"**/models/**/*.onnx",
"**/models/**/*.safetensors",
"**/llm*/**",
"**/openai-cache/**"
],
priority=12,
description="LLM and AI model files"
))
# Docker and containers
self.add_rule(ClassificationRule(
name="docker_volumes",
category="apps/volumes/docker-volumes",
patterns=["**/docker/volumes/**", "**/var/lib/docker/volumes/**"],
priority=10,
description="Docker volumes"
))
self.add_rule(ClassificationRule(
name="app_data",
category="apps/volumes/app-data",
patterns=["**/app-data/**", "**/application-data/**"],
priority=8,
description="Application data"
))
# Build outputs
self.add_rule(ClassificationRule(
name="build_output",
category="development/build-tools",
patterns=["**/target/**", "**/build/**", "**/dist/**", "**/out/**"],
priority=5,
description="Build output directories"
))
# Backups
self.add_rule(ClassificationRule(
name="system_backups",
category="backups/system",
patterns=["**/backup/**", "**/backups/**", "**/*.bak", "**/*.backup"],
priority=10,
description="System backups"
))
self.add_rule(ClassificationRule(
name="database_backups",
category="backups/database",
patterns=["**/*.sql.gz", "**/*.dump", "**/db-backup/**"],
priority=11,
description="Database backups"
))
# Archives
self.add_rule(ClassificationRule(
name="archives",
category="backups/archive",
patterns=["**/*.tar", "**/*.tar.gz", "**/*.tgz", "**/*.zip", "**/*.7z"],
priority=5,
description="Archive files"
))
self.add_rule(ClassificationRule(name='maven_cache', category='artifacts/java/maven', patterns=['**/.m2/**', '**/.maven/**', '**/maven-central-cache/**'], priority=10, description='Maven repository and cache'))
self.add_rule(ClassificationRule(name='gradle_cache', category='artifacts/java/gradle', patterns=['**/.gradle/**', '**/gradle-cache/**', '**/gradle-build-cache/**'], priority=10, description='Gradle cache and artifacts'))
self.add_rule(ClassificationRule(name='python_cache', category='cache/pycache', patterns=['**/__pycache__/**', '**/*.pyc', '**/*.pyo'], priority=10, description='Python cache files'))
self.add_rule(ClassificationRule(name='python_artifacts', category='artifacts/python', patterns=['**/pip-cache/**', '**/pypi-cache/**', '**/wheelhouse/**'], priority=10, description='Python package artifacts'))
self.add_rule(ClassificationRule(name='node_modules', category='cache/node_modules-archive', patterns=['**/node_modules/**'], priority=10, description='Node.js modules'))
self.add_rule(ClassificationRule(name='node_cache', category='artifacts/node', patterns=['**/.npm/**', '**/npm-registry/**', '**/yarn-cache/**', '**/pnpm-store/**'], priority=10, description='Node.js package managers cache'))
self.add_rule(ClassificationRule(name='go_cache', category='artifacts/go', patterns=['**/goproxy-cache/**', '**/go/pkg/mod/**', '**/go-module-cache/**'], priority=10, description='Go module cache'))
self.add_rule(ClassificationRule(name='git_repos', category='development/git-infrastructure', patterns=['**/.git/**', '**/gitea/repositories/**'], priority=15, description='Git repositories and infrastructure'))
self.add_rule(ClassificationRule(name='gitea', category='development/gitea', patterns=['**/gitea/**'], priority=12, description='Gitea server data'))
self.add_rule(ClassificationRule(name='postgresql', category='databases/postgresql', patterns=['**/postgresql/**', '**/postgres/**', '**/*.sql'], priority=10, description='PostgreSQL databases'))
self.add_rule(ClassificationRule(name='mysql', category='databases/mysql', patterns=['**/mysql/**', '**/mariadb/**'], priority=10, description='MySQL/MariaDB databases'))
self.add_rule(ClassificationRule(name='mongodb', category='databases/mongodb', patterns=['**/mongodb/**', '**/mongo/**'], priority=10, description='MongoDB databases'))
self.add_rule(ClassificationRule(name='redis', category='databases/redis', patterns=['**/redis/**', '**/*.rdb'], priority=10, description='Redis databases'))
self.add_rule(ClassificationRule(name='sqlite', category='databases/sqlite', patterns=['**/*.db', '**/*.sqlite', '**/*.sqlite3'], priority=8, description='SQLite databases'))
self.add_rule(ClassificationRule(name='llm_models', category='cache/llm-models', patterns=['**/hugging-face/**', '**/huggingface/**', '**/.cache/huggingface/**', '**/models/**/*.bin', '**/models/**/*.onnx', '**/models/**/*.safetensors', '**/llm*/**', '**/openai-cache/**'], priority=12, description='LLM and AI model files'))
self.add_rule(ClassificationRule(name='docker_volumes', category='apps/volumes/docker-volumes', patterns=['**/docker/volumes/**', '**/var/lib/docker/volumes/**'], priority=10, description='Docker volumes'))
self.add_rule(ClassificationRule(name='app_data', category='apps/volumes/app-data', patterns=['**/app-data/**', '**/application-data/**'], priority=8, description='Application data'))
self.add_rule(ClassificationRule(name='build_output', category='development/build-tools', patterns=['**/target/**', '**/build/**', '**/dist/**', '**/out/**'], priority=5, description='Build output directories'))
self.add_rule(ClassificationRule(name='system_backups', category='backups/system', patterns=['**/backup/**', '**/backups/**', '**/*.bak', '**/*.backup'], priority=10, description='System backups'))
self.add_rule(ClassificationRule(name='database_backups', category='backups/database', patterns=['**/*.sql.gz', '**/*.dump', '**/db-backup/**'], priority=11, description='Database backups'))
self.add_rule(ClassificationRule(name='archives', category='backups/archive', patterns=['**/*.tar', '**/*.tar.gz', '**/*.tgz', '**/*.zip', '**/*.7z'], priority=5, description='Archive files'))
def add_rule(self, rule: ClassificationRule) -> None:
"""Add a classification rule
Args:
rule: Rule to add
"""
self.rules.append(rule)
# Sort rules by priority (higher priority first)
self.rules.sort(key=lambda r: r.priority, reverse=True)
def remove_rule(self, rule_name: str) -> None:
"""Remove a rule by name
Args:
rule_name: Name of rule to remove
"""
self.rules = [r for r in self.rules if r.name != rule_name]
def match_path(self, path: Path) -> Optional[str]:
"""Match path against rules
Args:
path: Path to match
Returns:
Category name or None if no match
"""
path_str = str(path)
# Try to match each rule in priority order
for rule in self.rules:
for pattern in rule.patterns:
if fnmatch.fnmatch(path_str, pattern):
return rule.category
return None
def classify(self, path: Path, file_type: Optional[str] = None) -> Optional[str]:
"""Classify a file path
Args:
path: Path to classify
file_type: Optional file type hint
Returns:
Category name or None if no match
"""
def classify(self, path: Path, file_type: Optional[str]=None) -> Optional[str]:
return self.match_path(path)
def get_category_rules(self, category: str) -> list[ClassificationRule]:
"""Get all rules for a category
Args:
category: Category name
Returns:
List of rules for the category
"""
return [r for r in self.rules if r.category == category]
def get_all_categories(self) -> set[str]:
"""Get all defined categories
Returns:
Set of category names
"""
return {r.category for r in self.rules}
def get_rules_by_priority(self, min_priority: int = 0) -> list[ClassificationRule]:
"""Get rules above a minimum priority
Args:
min_priority: Minimum priority threshold
Returns:
List of rules with priority >= min_priority
"""
def get_rules_by_priority(self, min_priority: int=0) -> list[ClassificationRule]:
return [r for r in self.rules if r.priority >= min_priority]