340 lines
8.6 KiB
Markdown
340 lines
8.6 KiB
Markdown
# Data Reorganization Architecture: "Project Defrag"
|
|
|
|
## Executive Summary
|
|
|
|
This document outlines the architecture for reorganizing 20TB of backup data across multiple NVMe drives and servers. The solution implements intelligent deduplication, systematic categorization, and optimized storage patterns for enhanced performance and maintainability.
|
|
|
|
## System Architecture Overview
|
|
|
|
```mermaid
|
|
graph TB
|
|
subgraph "Source Environment"
|
|
A["Local Machine<br/>8x NVMe + 1 HDD<br/>~10TB"]
|
|
B["Server Machine<br/>Mixed Storage<br/>~10TB"]
|
|
end
|
|
|
|
subgraph "Processing Layer"
|
|
C["Discovery Engine"]
|
|
D["Classification Engine"]
|
|
E["Deduplication Engine"]
|
|
F["Migration Engine"]
|
|
end
|
|
|
|
subgraph "Target Architecture"
|
|
G["App Volumes"]
|
|
H["Gitea Repository"]
|
|
I["Build Cache (.maven, pycache)"]
|
|
J["Artifactories"]
|
|
K["Databases"]
|
|
L["Backups"]
|
|
M["LLM Model Cache"]
|
|
N["Git Infrastructure"]
|
|
end
|
|
|
|
A --> C
|
|
B --> C
|
|
C --> D
|
|
D --> E
|
|
E --> F
|
|
F --> G
|
|
F --> H
|
|
F --> I
|
|
F --> J
|
|
F --> K
|
|
F --> L
|
|
F --> M
|
|
F --> N
|
|
```
|
|
|
|
## Data Flow Architecture
|
|
|
|
### Phase 1: Discovery & Assessment
|
|
```mermaid
|
|
sequenceDiagram
|
|
participant D as Discovery Engine
|
|
participant FS as File System Scanner
|
|
participant DB as Metadata Database
|
|
participant API as System APIs
|
|
|
|
D->>FS: Scan directory structures
|
|
FS->>FS: Identify file types, sizes, dates
|
|
FS->>DB: Store file metadata
|
|
D->>API: Query system information
|
|
API->>DB: Store system context
|
|
DB->>D: Return analysis summary
|
|
```
|
|
|
|
### Phase 2: Classification & Deduplication
|
|
```mermaid
|
|
sequenceDiagram
|
|
participant C as Classifier
|
|
participant DH as Deduplication Hash
|
|
participant CDB as Canonical DB
|
|
participant MAP as Mapping Store
|
|
|
|
C->>C: Analyze file signatures
|
|
C->>DH: Generate content hashes
|
|
DH->>CDB: Check for duplicates
|
|
CDB->>DH: Return canonical reference
|
|
DH->>MAP: Store deduplication map
|
|
C->>C: Apply categorization rules
|
|
```
|
|
|
|
## Target Directory Structure
|
|
|
|
```
|
|
/mnt/organized/
|
|
├── apps/
|
|
│ ├── volumes/
|
|
│ │ ├── docker-volumes/
|
|
│ │ ├── app-data/
|
|
│ │ └── user-profiles/
|
|
│ └── runtime/
|
|
├── development/
|
|
│ ├── gitea/
|
|
│ │ ├── repositories/
|
|
│ │ ├── lfs-objects/
|
|
│ │ └── avatars/
|
|
│ ├── git-infrastructure/
|
|
│ │ ├── hooks/
|
|
│ │ ├── templates/
|
|
│ │ └── config/
|
|
│ └── build-tools/
|
|
│ ├── .maven/repository/
|
|
│ ├── gradle-cache/
|
|
│ └── sbt-cache/
|
|
├── artifacts/
|
|
│ ├── java/
|
|
│ │ ├── maven-central-cache/
|
|
│ │ ├── jfrog-artifactory/
|
|
│ │ └── gradle-build-cache/
|
|
│ ├── python/
|
|
│ │ ├── pypi-cache/
|
|
│ │ ├── wheelhouse/
|
|
│ │ └── pip-cache/
|
|
│ ├── node/
|
|
│ │ ├── npm-registry/
|
|
│ │ ├── yarn-cache/
|
|
│ │ └── pnpm-store/
|
|
│ └── go/
|
|
│ ├── goproxy-cache/
|
|
│ ├── module-cache/
|
|
│ └── sumdb-cache/
|
|
├── cache/
|
|
│ ├── llm-models/
|
|
│ │ ├── hugging-face/
|
|
│ │ ├── openai-cache/
|
|
│ │ └── local-llm/
|
|
│ ├── pycache/
|
|
│ ├── node_modules-archive/
|
|
│ └── browser-cache/
|
|
├── databases/
|
|
│ ├── postgresql/
|
|
│ ├── mysql/
|
|
│ ├── mongodb/
|
|
│ └── redis/
|
|
├── backups/
|
|
│ ├── system/
|
|
│ ├── application/
|
|
│ ├── database/
|
|
│ └── archive/
|
|
└── temp/
|
|
├── processing/
|
|
├── staging/
|
|
└── cleanup/
|
|
```
|
|
|
|
## Technology Stack Recommendation
|
|
|
|
### Primary Language: **Python 3.11+**
|
|
**Rationale:**
|
|
- Excellent file system handling capabilities
|
|
- Rich ecosystem for data processing (pandas, pyarrow)
|
|
- Built-in multiprocessing for I/O operations
|
|
- Superior hash library support for deduplication
|
|
- Cross-platform compatibility
|
|
|
|
### Key Libraries:
|
|
```python
|
|
# Core processing
|
|
import asyncio
|
|
import hashlib
|
|
import multiprocessing as mp
|
|
from pathlib import Path
|
|
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
|
|
|
|
# Data handling
|
|
import pandas as pd
|
|
import pyarrow as pa
|
|
import sqlite3
|
|
import json
|
|
|
|
# File analysis
|
|
import magic # python-magic
|
|
import mimetypes
|
|
import filetype
|
|
|
|
# System integration
|
|
import psutil
|
|
import shutil
|
|
import os
|
|
```
|
|
|
|
## Deduplication Strategy
|
|
|
|
### Algorithm Selection: **Variable-Size Chunking with Rabin Fingerprinting**
|
|
|
|
```python
|
|
class AdvancedDeduplication:
|
|
def __init__(self, avg_chunk_size=8192):
|
|
self.chunker = RabinChunker(avg_chunk_size)
|
|
self.hash_store = HashStore()
|
|
|
|
def deduplicate_file(self, file_path):
|
|
chunks = self.chunker.chunk_file(file_path)
|
|
file_hash = self.compute_file_hash(chunks)
|
|
|
|
if self.hash_store.exists(file_hash):
|
|
return self.create_reference(file_hash)
|
|
else:
|
|
self.store_canonical(file_path, file_hash)
|
|
return file_hash
|
|
```
|
|
|
|
### Performance Optimization:
|
|
- **Parallel Processing**: Utilize all CPU cores for hashing
|
|
- **Memory Mapping**: For large files (>100MB)
|
|
- **Incremental Hashing**: Process files in streams
|
|
- **Cache Layer**: Redis for frequently accessed hashes
|
|
|
|
## Classification Engine
|
|
|
|
### Rule-Based Classification System:
|
|
|
|
```yaml
|
|
classification_rules:
|
|
build_artifacts:
|
|
patterns:
|
|
- "**/target/**"
|
|
- "**/build/**"
|
|
- "**/dist/**"
|
|
- "**/node_modules/**"
|
|
action: categorize_as_build_cache
|
|
|
|
development_tools:
|
|
patterns:
|
|
- "**/.maven/**"
|
|
- "**/.gradle/**"
|
|
- "**/.npm/**"
|
|
- "**/.cache/**"
|
|
action: categorize_as_tool_cache
|
|
|
|
repositories:
|
|
patterns:
|
|
- "**/.git/**"
|
|
- "**/repositories/**"
|
|
- "**/gitea/**"
|
|
action: categorize_as_vcs
|
|
|
|
database_files:
|
|
patterns:
|
|
- "**/*.db"
|
|
- "**/*.sqlite"
|
|
- "**/postgresql/**"
|
|
- "**/mysql/**"
|
|
action: categorize_as_database
|
|
|
|
model_files:
|
|
patterns:
|
|
- "**/*.bin"
|
|
- "**/*.onnx"
|
|
- "**/models/**"
|
|
- "**/llm*/**"
|
|
action: categorize_as_ai_model
|
|
```
|
|
|
|
## Performance Considerations
|
|
|
|
### NVMe Optimization Strategies:
|
|
|
|
1. **Parallel I/O Operations**
|
|
- Queue depth optimization (32-64 operations)
|
|
- Async I/O with io_uring where available
|
|
- Multi-threaded directory traversal
|
|
|
|
2. **Memory Management**
|
|
- Streaming processing for large files
|
|
- Memory-mapped file access
|
|
- Buffer pool for frequent operations
|
|
|
|
3. **CPU Optimization**
|
|
- SIMD instructions for hashing (AVX2/NEON)
|
|
- Process pool for parallel processing
|
|
- NUMA-aware memory allocation
|
|
|
|
## Migration Strategy
|
|
|
|
### Three-Phase Approach:
|
|
|
|
```mermaid
|
|
graph LR
|
|
A[Phase 1: Analysis] --> B[Phase 2: Staging]
|
|
B --> C[Phase 3: Migration]
|
|
|
|
A --> A1[Discovery Scan]
|
|
A --> A2[Deduplication Analysis]
|
|
A --> A3[Space Calculation]
|
|
|
|
B --> B1[Create Target Structure]
|
|
B --> B2[Hard Link Staging]
|
|
B --> B3[Validation Check]
|
|
|
|
C --> C1[Atomic Move Operations]
|
|
C --> C2[Symlink Updates]
|
|
C --> C3[Cleanup Verification]
|
|
```
|
|
|
|
## Monitoring & Validation
|
|
|
|
### Key Metrics:
|
|
- **Processing Rate**: Files/second, GB/hour
|
|
- **Deduplication Ratio**: Original vs. Final size
|
|
- **Error Rate**: Failed operations percentage
|
|
- **Resource Usage**: CPU, Memory, I/O utilization
|
|
|
|
### Validation Checks:
|
|
- File integrity verification (hash comparison)
|
|
- Directory structure validation
|
|
- Symlink resolution testing
|
|
- Permission preservation audit
|
|
|
|
## Risk Mitigation
|
|
|
|
### Safety Measures:
|
|
1. **Read-First Approach**: Never modify source until validation
|
|
2. **Incremental Processing**: Process in small batches
|
|
3. **Backup Verification**: Ensure backup integrity before operations
|
|
4. **Rollback Capability**: Maintain reverse mapping for recovery
|
|
5. **Dry-Run Mode**: Preview all operations before execution
|
|
|
|
## Implementation Timeline
|
|
|
|
### Phase 1: Tool Development (2-3 weeks)
|
|
- Core discovery engine
|
|
- Classification system
|
|
- Basic deduplication
|
|
- Testing framework
|
|
|
|
### Phase 2: Staging & Validation (1-2 weeks)
|
|
- Target structure creation
|
|
- Sample data processing
|
|
- Performance optimization
|
|
- Safety verification
|
|
|
|
### Phase 3: Production Migration (2-4 weeks)
|
|
- Full data processing
|
|
- Continuous monitoring
|
|
- Issue resolution
|
|
- Final validation
|
|
|
|
This architecture provides a robust, scalable solution for your data reorganization needs while maintaining data integrity and optimizing for your NVMe storage infrastructure. |